The aim of this document is to outline the basic workflow of
importing data downloaded from the ICES Regional Database & Estimation
System (RDBES) or a list
object containing data frames
(or data.tables) into R
using the RDBEScore
package.
The function createRDBESDataObject is intended to directly import Commercial Landing (CL), Commercial Effort (CE) and Commercial Sampling (CS) tables downloaded from RDBES.
It can directly import the .zip
archive from the RDBES
download containing all mandatory hierarchy tables plus VD and SL:
importedH1 <- createRDBESDataObject(input = "./vignetteData/H1_2023_10_16.zip")
#print the not NULL table names
names(importedH1[!unlist(lapply(importedH1, is.null))])
#> [1] "DE" "SD" "VS" "FT" "FO" "SS" "SA" "FM" "BV" "VD" "SL"
The easiest way to get a glimpse of the imported data hierarchy and single table row counts is just to print it. The information also includes the range of number sampled and number total for each table together with the selection method and number of rows.
#calls the print function
importedH1
#> Hierarchy 1 RDBESdataObject:
#> DE: 8
#> SD: 8
#> VS: 1214 (SRSWOR,CENSUS,SRSWR: 2-135/4-1382)
#> FT: 1430 (CENSUS,SRSWR: 1-3/1-100)
#> FO: 1916 (CENSUS,SRSWR: 1-3/1-20)
#> SS: 1916 (CENSUS,SRSWR: 1/1-4)
#> SA: 1916 (CENSUS,SRSWR: 1/1-2)
#> FM: 7290
#> BV: 14580 (SRSWR: 2/2)
#> VD: 311
#> SL: 170
It can import the CL, CE, VD or SL tables .zip
archives,
but will include all other tables as NULL
:
importedSL <- createRDBESDataObject(input = "./vignetteData/HSL_2023_10_16.zip")
#print the not NULL table names
importedSL
#> No hierarchy, RDBESdataObject:
#> SL: 170
It can also handle overwriting zip
file original files
with files appearing later in the list. However each overwrite results
in a warning!
importFiles <- c("./vignetteData/HSL_2023_10_16.zip",
"./vignetteData/H1_2023_10_16.zip")
importedTables <- createRDBESDataObject(input = importFiles)
#> Warning in FUN(X[[i]], ...): Duplicate unzipped files detected:
#> SpeciesList.csv
#print the not NULL table names
names(importedTables[!unlist(lapply(importedTables, is.null))])
#> [1] "DE" "SD" "VS" "FT" "FO" "SS" "SA" "FM" "BV" "VD" "SL"
It can also import the unzipped .csv
files with the
default RDBES names:
It can also import a list
object containing data frames
(or data.tables). However, it should be noted that this type of import
bypasses the RDBES upload data integrity checks.
#list of data frames
listOfDfsH1 <- readRDS("./vignetteData/H1_2023_10_19.rds")
#print the class of the list elements
sapply(listOfDfsH1, class)
#> DE SD VS FT FO SS
#> "data.frame" "data.frame" "data.frame" "data.frame" "data.frame" "data.frame"
#> SA FM BV VD SL
#> "data.frame" "data.frame" "data.frame" "data.frame" "data.frame"
It should be noted that the objects created are of the S3 class “RDBESDataObject”. The class has defined print(), summary() and sort() methods. For more info on theese see vignette Manipulating RDBESDataObjects.
importedTables <- createRDBESDataObject("./vignetteData/H1_2023_10_16.zip")
class(importedTables)
#> [1] "RDBESDataObject" "list"
RDBESDataObject structure can be validated using the validateRDBESDataObject() function.
validateRDBESDataObject(importedTables, verbose = TRUE)
#> [1] "Note that TE is NULL but this is allowed in an RDBESDataObject"
#> [2] "Note that LO is NULL but this is allowed in an RDBESDataObject"
#> [3] "Note that OS is NULL but this is allowed in an RDBESDataObject"
#> [4] "Note that LE is NULL but this is allowed in an RDBESDataObject"
#> [5] "Note that CL is NULL but this is allowed in an RDBESDataObject"
#> [6] "Note that CE is NULL but this is allowed in an RDBESDataObject"
To see what you can do with the imported RDBESDataObject see other vignettes like Manipulating RDBESDataObjects.
Other vignettes: