
Package: FLCore (via r-universe)
August 10, 2024

Title Core Package of FLR, Fisheries Modelling in R

Version 2.6.20.9204

Description Core classes and methods for FLR, a framework for
fisheries modelling and management strategy simulation in R.
Developed by a team of fisheries scientists in various
countries. More information can be found at
<http://flr-project.org/>.

X-schema.org-keywords fisheries, flr, R

License GPL (>= 2)

Depends R(>= 4.0), lattice, iterators

Imports graphics, grid, methods, Matrix, MASS, stats, stats4, utils,
ggplot2

Suggests knitr, testthat, rlang, hedgehog

VignetteBuilder knitr

URL http://flr-project.org/FLCore

BugReports https://github.com/flr/FLCore/issues

Collate 'genericMethods.R' 'uom.R' 'spread.R' 'FLAccesors.R'
'classesArr.R' 'FLArray.R' 'FLQuant.R' 'FLQuantPoint.R'
'FLQuantDistr.R' 'FLPar.R' 'classesComp.R' 'classesLst.R'
'FLlst-class.R' 'FLComp.R' 'FLS.R' 'FLStock.R' 'FLStockLen.R'
'FLI.R' 'FLIndex.R' 'FLIndexBiomass.R' 'FLQuants.R'
'predictModel.R' 'FLStockR.R' 'FLBiol.R' 'FLModel.R'
'FLModelDeriv.R' 'FLModelSim.R' 'FLSR.R' 'operators.R'
'io.VPAsuite.R' 'io.FLStock.R' 'io.MFCL.R' 'io.ADMB.R'
'FLCohort.R' 'FLlst-methods.R' 'getPlural.R' 'io.FLIndices.R'
'SRmodels.R' 'coerce.R' 'PlotDiagnostics.R' 'jackknife.R'
'zzz.R' 'io.Adapt.R' 'io.VPA2Box.R' 'data.R' 'plot.R' 'oem.R'
'length.R'

LazyLoad Yes

LazyData No

Encoding UTF-8

1

http://flr-project.org/
http://flr-project.org/FLCore
https://github.com/flr/FLCore/issues

2 Contents

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.1

Repository https://ices-tools-prod.r-universe.dev

RemoteUrl https://github.com/flr/FLCore

RemoteRef HEAD

RemoteSha 5dac55024c83fc6ee198d780d9cd810819c574a1

Contents
acc . 4
accessors . 5
adjust,FLStock-method . 8
ageopt . 9
AIC . 10
append-FLCore . 11
apply,FLArray,numeric,function-method . 12
ar1rlnorm . 13
Arith,numeric,FLArray-method . 14
as.FLSRs . 16
bias . 16
BIC . 18
bubbles . 19
catch.n,FLQuant-method . 20
catchInmature . 21
coerce-methods . 21
compare . 22
compute . 23
computeHarvest,FLStock,missing-method . 25
cpue . 26
createFLAccesors . 27
datasets . 28
dbind . 29
dims . 30
dimSummaries . 32
discardsRatio . 37
drop,FLArray-method . 38
evalPredictModel . 39
exp,FLQuant-method . 40
Extract . 40
ffwd . 43
FLArray . 44
FLBiol . 45
FLBiols . 46
FLCohort . 47
FLCohorts . 49
FLComp . 50

Contents 3

FLComps . 51
FLI . 52
FLIndex . 53
FLIndexBiomass . 54
FLIndices . 56
FLlst . 57
FLModel . 58
FLModelSim . 60
FLModelSims . 61
FLPar . 62
FLParJK . 63
FLPars . 64
FLQuant . 65
FLQuantDistr . 68
FLQuantJK . 70
FLQuantPoint . 71
FLQuants . 73
FLS . 74
FLSR . 75
FLSRs . 77
FLStock . 79
FLStockLen . 81
FLStocks . 83
FUNCTION . 84
Funwanted . 85
fwdWindow . 85
getSlotNamesClass . 87
group . 87
iav . 88
indicators.len . 89
intersect . 91
iter . 92
jackknife . 93
join . 94
lattice . 95
mase . 97
mbar . 98
meanage . 98
meanwt . 99
metrics . 100
mohnMatrix . 101
msy . 101
names . 102
plot . 103
predictModel . 105
production . 106
propagate . 107
properties . 108

4 acc

quant . 109
quantTotals . 110
readVPAIntercatch . 111
residuals-FLQuant . 111
rnoise,numeric,FLQuant-method . 112
roc . 114
ruleset . 114
runstest . 115
rwalk . 117
show . 118
simplify . 119
slim . 120
split-methods . 121
splom . 121
spread . 122
SRModels . 123
ssb . 127
ssb_next . 129
standardUnits . 130
summary,FLArray-method . 131
survey . 132
survivors . 134
sweep,FLArray-method . 135
tail,FLQuant-method . 136
trim . 137
units-FLCore . 138
uom . 140
uomTable . 141
upperlower . 142
verify . 143
vonbert . 145
weighted.mean,FLQuants,FLQuants-method . 145
wireframe . 146
yearSample . 147
z . 148
%+% . 149

Index 153

acc Catch curve estimates of total mortality at age (Z)

Description

Catch curve estimates of total mortality at age (Z)

accessors 5

Usage

acc(object, ...)

Examples

data(ple4)

accessors accessor and replacement methods for FLCore classes

Description

All S4 classes defined in FLCore have methods for accessing and replacing any of their slots. These
methods are named as the slot, and will return the content of the slot, for the accessor method, or
modify it with the provided value.

Usage

name(object, ...)

desc(object, ...)

range(x, i) <- value

catch(object, ...)

catch.n(object, ...) <- value

catch.wt(object, ...)

discards(object, ...)

discards.n(object, ...)

discards.wt(object, ...)

landings(object, ...)

landings.n(object, ...)

landings.wt(object, ...)

m(object, ...)

stock(object, ...)

stock.n(object, ...)

6 accessors

stock.wt(object, ...)

m.spwn(object, ...)

harvest(object, catch, ...)

harvest.spwn(object, ...)

mat(object, ...)

n(object, ...)

m(object, ...)

wt(object, ...)

fec(object, ...)

spwn(object, ...)

effort(object, metier, ...)

type(object, ...)

distr(object, ...)

distribution(object, ...)

index(object, ...)

index.var(object, ...)

catch.n(object, ...)

catch.wt(object, ...)

sel.pattern(object, ...)

index.q(object, ...)

model(object, ...)

logl(object, ...)

gr(object, ...)

initial(object, ...)

accessors 7

logLik(object, ...)

vcov(object, ...) <- value

hessian(object, ...)

logerror(object, ...)

details(object, ...)

residuals(object, ...) <- value

fitted(object, ...)

rec(object, ...)

rec.obs(object, ...)

catch.q(object, ...)

discards.sel(object, ...)

landings.sel(object, ...)

params(object, ...)

S4 replacement method for signature 'FLS,FLQuants'
catch(object) <- value

Arguments

object The object from which a slot is to be extracted or replaced

value Object to be inserted into the relevant slot

Details

Accessors and replacement methods, with some exception, are created at build time by calls to
the createFLAccessors function. An accessor method is created for each slot, with simply calls
slot() on the relevant slot name. For slots of class FLQuant, or FLArray-based, two methods are
created: one if value is of class FLQuant, and another for value being a numeric vector. The later
would insert the vector into the slot structure, using R’s recycling rules.

Users are encouraged to use the accessor methods, rather than the ’@’ operator or the slot()
method, to isolate code from the internal structure of the class. If a slot was to be altered or deleted
in the future, a method would be provided to return the same value, computed from other slots.

Some of these methods might already not access directly an slot, and instead carry out a calculation
to return the requested value, depending on the class being called with. Please refer to the particular
method implementation to see if this is the case.

8 adjust,FLStock-method

Accessor methods for slots of class predictModel behave differently depending on the compute
argument. Please refer to the relevant help page for further clarification.

An object of class FLQuants, containing three elements named catch, catch.n and catch.wt, as
returned by computeCatch, can be assigned directly to an object using catch<-.

Value

The required slot, for an accessor method, or invisible modifies the object, for the replacement one.

Author(s)

The FLR Team

See Also

FLQuant, FLStock, FLIndex, FLBiol, predictModel

Examples

data(ple4)

To access the catch slot in an FLStock, use
catch(ple4)

while to modify it, do
catch(ple4) <- catch(ple4) * 2

A number can be used as input, to be recycled
m(ple4) <- 0.3
same as a longer vector, by age
m(ple4) <- 0.4^(seq(1, 2, length=10))

To see the methods defined by createFLAccessors, run, for example
getMethod('catch', 'FLS')

Assign the 3 catch slots
catch(ple4) <- computeCatch(ple4, slot="all")

adjust,FLStock-method Recalculate to adjust abundances to F and M

Description

An FLStock object is projected forward using the initial abundances and the total mortality-at-age
per timestep. New values for the stock.n and catch.n slots are calculated, assuming that harvest and
m are correct. This calculation provides a test of the internal consistency of the object.

ageopt 9

Usage

S4 method for signature 'FLStock'
adjust(object)

Arguments

object an FLStock object

Value

FLStock object

See Also

harvest

Examples

data(ple4)
test <- adjust(ple4)
Difference in catch due to estimation error
plot(FLStocks(PLE=ple4, TEST=test))

ageopt Age at which a cohort reaches its maximum biomass, calculated by
year

Description

The optimal (or critical) age is the transition point when a cohort achieves its maximum biomass in
the absemce of fishing, i.e. losses due to natural mortality are now greater than gains due to increase
in individual biomass.

Usage

S4 method for signature 'FLStock'
ageopt(object)

Arguments

object An object of class ’FLStock’

Value

The age at which maximum biomass is reached, an ’FLQuant’.

Author(s)

The FLR Team

10 AIC

See Also

FLStock

Examples

data(ple4)
ageopt(ple4)

AIC Method AIC

Description

Akaike’s information criterion (AIC) method A method to calculate Akaike’s ’An Information Cri-
terion’ (AIC) of an FLModel object from the value of the obtained log-likelihood stored in its
logLik slot.

Usage

S4 method for signature 'FLModel,numeric'
AIC(object, k = 2)

Arguments

object an FLModel object

k the penalty per parameter to be used; the default ’k = 2’ is the classical AIC.

Generic function

AIC(object, k)

Author(s)

The FLR Team

See Also

AIC, logLik, FLModel

Examples

data(nsher)
AIC(nsher)

append-FLCore 11

append-FLCore Append objects along the year dimension

Description

Method to append objects along the year dimensions, by extending, combining and substituting
sections of them.

Usage

S4 method for signature 'FLQuant,FLQuant'
append(x, values, after = dims(values)$minyear - 1)

S4 method for signature 'FLStock,FLStock'
append(x, values, after = dims(values)$minyear - 1)

Arguments

x the object to which the values are to be appended to.

values to be included in the modified object.

after a year dimname after with the values are to be appended.

Details

FLR objects are commonly manipulated along the year dimension, and the append method offers a
simple interface for substituting parts of an object with another, or combine them into one, extending
them when necessary. The object to be included or added to the first will be placed as defined by
the year dimnames, unless the after input argument specifies otherwise.

Attributes like dimnames and units will always be taken from the first argument, unless the neces-
sary chnages to dimnames$year

Value

An object of the same class as x with values appended.

Author(s)

The FLR Team

See Also

base::append

12 apply,FLArray,numeric,function-method

Examples

append(FLQuant, FLQuant)
fq1 <- FLQuant(1, dimnames=list(age=1:3, year=2000:2010))
fq2 <- FLQuant(2, dimnames=list(age=1:3, year=2011:2012))
fq3 <- FLQuant(2, dimnames=list(age=1:3, year=2014:2016))

Appends by dimnames$year
append(fq1, fq2)
Appends by dimnames$year with gap (2011:2013)
append(fq1, fq3)
Appends inside x
append(fq1, fq2, after=2009)
Appends after end of x
append(fq1, fq2, after=2013)

append(FLStock, FLStock)
data(ple4)
fs1 <- window(ple4, end=2001)
fs2 <- window(ple4, start=2002)
fs3 <- window(ple4, start=2005)

Appends by dimnames$year
stock.n(append(fs1, fs2))

Appends by dimnames$year with gap (2011:2013)
stock.n(append(fs1, fs3))

Appends inside x
stock.n(append(fs1, fs3, after=2000))
Appends after end of x
stock.n(append(fs1, fs3, after=2005))

apply,FLArray,numeric,function-method

apply method for FLCore classes

Description

Applies a function over the margins of an array-based FLCore class

Usage

S4 method for signature 'FLArray,numeric,function'
apply(X, MARGIN, FUN, ..., simplify = TRUE)

S4 method for signature 'FLPar,ANY,ANY'
apply(X, MARGIN, FUN, ..., simplify = TRUE)

S4 method for signature 'FLQuantJK,numeric,function'

ar1rlnorm 13

apply(X, MARGIN, FUN, ..., simplify = TRUE)

S4 method for signature 'FLParJK,numeric,function'
apply(X, MARGIN, FUN, ..., simplify = TRUE)

Details

These methods call R’s base::apply on an FLArray the standard arithmetic operators included in
the Arith group ("+", "-", "*", ‘"^", "%%", "%/%", and "/"), so that they return an object of the
appropriate class.

When the operation involves objects of two classes (e.g. FLPar and FLQuant), the class is the
returned object is that of the more complexs object, in this case FLQuant.

Author(s)

The FLR Team

See Also

base::apply

Examples

flq <- FLQuant(rlnorm(90), dim=c(3,10), units='kg')
flp <- FLPar(a=99)

FLQuant and numeric
flq * 25
Two FLQuant objects
flq + flq

ar1rlnorm Generates a time series of possible bias-corrected lognormal autocor-
related random values

Description

Thorston, 2020.

Usage

ar1rlnorm(
rho,
years,
iters = 1,
meanlog = 0,
sdlog = 1,

14 Arith,numeric,FLArray-method

bias.correct = TRUE,
...

)

Arguments

rho Autocorrelation coefficient.

years Vector of year names.

iters Number of iterations.

meanlog Mean of the series in log space.

sdlog Marginal standard deviation in log space.

bias.correct Should bias-correction be applied? Defaults to TRUE.

Value

An FLQuant object

Author(s)

Iago Mosqueira (WMR), Henning Winker (JRC).

References

Thorson, J. T. Predicting recruitment density dependence and intrinsic growth rate for all fishes
worldwide using a data-integrated life-history model. Fish Fish. 2020; 21: 237– 251. https://doi-
org.ezproxy.library.wur.nl/10.1111/faf.12427

See Also

rlnorm

Examples

devs <- ar1rlnorm(rho=0.6, years=2000:2030, iter=500, meanlog=0, sdlog=1)
plot(devs)

Arith,numeric,FLArray-method

Arithmetic operators for FLCore classes

Description

Overloaded arithmetic operators for FLCore classes

Arith,numeric,FLArray-method 15

Usage

S4 method for signature 'numeric,FLArray'
Arith(e1, e2)

S4 method for signature 'FLArray,numeric'
Arith(e1, e2)

S4 method for signature 'FLArray,FLArray'
Arith(e1, e2)

S4 method for signature 'FLPar,FLPar'
Arith(e1, e2)

S4 method for signature 'FLArray,FLPar'
Arith(e1, e2)

S4 method for signature 'FLPar,FLArray'
Arith(e1, e2)

Details

These methods apply the standard arithmetic operators included in the Arith group ("+", "-", "*",
"^", "%%", "%/%", and "/"), so that they return an object of the appropriate class.

When the operation involves objects of two classes (e.g. FLPar and FLQuant), the class is the
returned object is that of the more complexs object, in this case FLQuant.

Author(s)

The FLR Team

See Also

methods::Arith base::Arithmetic

Examples

flq <- FLQuant(rlnorm(90), dim=c(3,10), units='kg')
flp <- FLPar(a=99)

FLQuant and numeric
flq * 25
Two FLQuant objects
flq + flq

FLQuant and FLPar
flq / flp

16 bias

as.FLSRs Convert an FLStock into a list of one or FLSR objects.

Description

A single FLStock can be coerced into a list with one or more objects of class FLSR, each of them
typically set to a diefferemt stock-recruit model.

Usage

as.FLSRs(x, models = NULL, ...)

Arguments

x An estimated FLStock object to coerce.

models Name(s) of model(s) to fit.

... Any extra arguments to be passed to as.FLSR.

Value

An objecdt of class FLSRs

Author(s)

FLR Team, 2023.

See Also

FLSRs FLSRs as.FLSR()

Examples

data(ple4)
as.FLSRs(ple4, model=c("bevholt", "segreg"))

bias Bias of estimates through jackknife

Description

Description: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Pellentesque eleifend odio
ac rutrum luctus. Aenean placerat porttitor commodo. Pellentesque eget porta libero. Pellentesque
molestie mi sed orci feugiat, non mollis enim tristique.

bias 17

Usage

S4 method for signature 'FLQuantJK'
bias(x)

S4 method for signature 'FLParJK'
bias(x)

Arguments

x An object holding estimates obtained through jackknife

Details

Details: Aliquam sagittis feugiat felis eget consequat. Praesent eleifend dolor massa, vitae faucibus
justo lacinia a. Cras sed erat et magna pharetra bibendum quis in mi. Sed sodales mollis arcu, sit
amet venenatis lorem fringilla vel. Vivamus vitae ipsum sem. Donec malesuada purus at libero
bibendum accumsan. Donec ipsum sapien, feugiat blandit arcu in, dapibus dictum felis.

B̂ias(θ) = (n− 1)((
1

n

n∑
i=1

θ̂(i))− θ̂)

Value

A value for the mean bias

Author(s)

The FLR Team

See Also

FLComp

Examples

flq <- FLQuant(1:8)
flj <- jackknife(flq)
bias(flj)

18 BIC

BIC Method BIC Bayesian information criterion (BIC) method

Description

A method to calculate the Bayesian information criterion (BIC), also known as Schwarz’s Bayesian
criterion of an FLModel object from the value of the obtained log-likelihood stored in its logLik
slot.

Usage

S4 method for signature 'FLModel'
BIC(object)

Arguments

object a fitted FLModel object for which there exists a ’logLik’ method to extract the
corresponding log-likelihood.

Generic function

BIC(object)

Author(s)

The FLR Team

See Also

AIC, BIC, FLModel, logLik

Examples

data(nsher)
BIC(nsher)

bubbles 19

bubbles Method Bubbles plot

Description

This method plots three dimensional data such as matrices by age and year or age-class, very com-
mon in fisheries. The area of each bubble is proportional to the corresponding value in the matrix.
Note that bubbles accepts an argument bub.scale to control the relative size of the bubbles. Pos-
itive and negative values have separate colours.

Usage

S4 method for signature 'formula,FLQuant'
bubbles(x, data, bub.scale = 2.5, col = c("blue", "red"), ...)

S4 method for signature 'formula,data.frame'
bubbles(x, data, bub.scale = 2.5, col = c("blue", "red"), ...)

S4 method for signature 'formula,FLCohort'
bubbles(x, data, bub.scale = 2.5, ...)

S4 method for signature 'formula,FLQuants'
bubbles(x, data, bub.scale = 2.5, bub.col = gray(c(0.1, 0.1)), ...)

Generic function

bubbles(x, data)

Author(s)

The FLR Team

See Also

lattice, FLQuant, FLQuants,FLCohort

Examples

data(ple4)
bubbles(age~year, data=catch.n(ple4))
bubbles(age~year, data=catch.n(ple4), bub.scale=5)
bubbles(age~cohort, data=FLCohort(catch.n(ple4)), bub.scale=5)

qt01 <- log(catch.n(ple4)+1)
qt02 <- qt01+rnorm(length(qt01))
flqs <- FLQuants(qt01=qt01, qt02=qt02)
bubbles(age~year|qname, data=flqs, bub.scale=1)

20 catch.n,FLQuant-method

qt03 <- FLQuant(rnorm(100),dimnames=list(age=as.character(1:10),
year=as.character(1:10)))

bubbles(age~year, data=qt03, bub.scale=7, col=c("black","red"), pch=16)

catch.n,FLQuant-method

catch.n calculation method

Description

Calculate catch.n (catch-at-age/length) from abundances, F and M using the catch equation

Usage

S4 method for signature 'FLQuant'
catch.n(object, harvest, m)

Details

The catch-at-age/length, commonly found in the catch.n slot of an FLStock object, can be sim-
ply calculated from abundances-at-age/length, and natural and fishing mortalities-at-age/length by
applying the catch equation

C = N · F F

M + F
· (1− e(−M − F))

Author(s)

The FLR Team

See Also

FLStock

Examples

data(ple4)
res <- catch.n(stock.n(ple4), harvest(ple4), m(ple4))
catch.n(ple4) / res

catchInmature 21

catchInmature Proportion of mature and inmature fish in the catch

Description

The proportion in weight of mature and inmature fish in the catch can be computed using catchMa-
ture and catchInmature.

Usage

catchInmature(object)

catchMature(object)

Arguments

object An age-structured FLStock object

Value

An FLQuant object

Author(s)

The FLR Team

See Also

FLComp

Examples

data(ple4)
catchInmature(ple4)
catchMature(ple4)

coerce-methods Convert Objects Between Classes

Description

Objects of various FLCore classes can be converted into other classes, both basic R ones, like
data.frame, and others defined in the package. For the specifics of the precise calculations carried
out for each pair of classes, see below.

22 compare

Arguments

object Object to be converted.

Class Name of the class to convert the object to, character.

Value

An object of the requested class.

FLArray to data.frame

The six dimensions of an FLArray are converted into seven columns, named quant (or any other
name given to the first dimension in the object), year, unit, season, area, iter and data. The
last one contains the actual numbers stored in the array. units are stored as an attribute to the
data.frame. The year and data columns are of type numeric, while all others are factor.

FLPar to data.frame

The two or more dimensions of an FLPar objects are converted into three or more columns. For a
2D objects, they are named params, iter and data. The last one contains the actual numbers stored
in the array, in a column type numeric, while all others are factor.

Author(s)

The FLR Team

See Also

base::as, base::coerce

Examples

from FLQuant to data.frame
as(FLQuant(rnorm(100), dim=c(5, 20)), "data.frame")
from FLPar to data.frame
as(FLPar(phi=rnorm(10), rho=rlnorm(10)), "data.frame")

compare A method for comparing FLR objects

Description

Comparisons of complete objects of FLR classes can be carried out and a report table is generated
to better identify differences. Comparisons do not substitute but complement those provided by R’s
all.equal and identical.

Usage

compare(result, target, ...)

compute 23

Arguments

result First element in comparison, result of method or operation.

target Second element, desired output.

Value

A table of comparisons, of class data.frame.

Author(s)

Iago Mosqueira (WMR)

compute Methods to compute quantities

Description

Methods to compute total quant-aggregated catch, landings, discards and stock biomass from age
or length-structured numbers and mean weights.

Methods to compute total quant-aggregated catch, landings, discards and stock biomass from age
or length-structured numbers and mean weights.

Usage

computeLandings(object, ...)

computeDiscards(object, ...)

computeCatch(object, ...)

computeStock(object, ...)

computeHarvest(object, catch, ...)

computeLandings(object, ...)

computeDiscards(object, ...)

computeCatch(object, ...)

computeStock(object, ...)

S4 method for signature 'FLS'
computeLandings(object, na.rm = TRUE)

S4 method for signature 'FLS'

24 compute

computeDiscards(object, na.rm = TRUE)

S4 method for signature 'FLS'
computeCatch(object, slot = "catch", na.rm = TRUE)

S4 method for signature 'FLS'
computeStock(object, na.rm = TRUE)

Details

These methods compute the total catch, landings, discards and stock biomass from the quant-
structured values in numbers and weight per individual. The calculation for landings, discards and
stock involves the product of the landings/discards/stock in numbers (landings.n, discards.n or
stock.n) by the individual weight-at-quant (landings.wt, discards.wt or stock.wt), as in

L = Ln ∗ Lwt

By selecting slot="catch", computeCatch can calculate in the same way the total catch from the
catch-at-quant and weight in the catch. Those two values (in slots catch.n and catch.wt) can also
be calculated (from landings and discards) by specifying slot="n" and slot="wt" respectively.
Calling computeCatch with option slot="all" will carry out the three calculations. In this case,
the returned object will be of class FLQuants, with element names catch, catch.n and catch.wt,
which can then be passed directly to the catch<- replacement method.

These methods compute the total catch, landings, discards and stock biomass from the quant-
structured values in numbers and weight per individual. The calculation for landings, discards and
stock involves the product of the landings/discards/stock in numbers (landings.n, discards.n or
stock.n) by the individual weight-at-quant (landings.wt, discards.wt or stock.wt), as in

L = Ln ∗ Lwt

By selecting slot="catch", computeCatch can calculate in the same way the total catch from the
catch-at-quant and weight in the catch. Those two values (in slots catch.n and catch.wt) can also
be calculated (from landings and discards) by specifying slot="n" and slot="wt" respectively.
Calling computeCatch with option slot="all" will carry out the three calculations. In this case,
the returned object will be of class FLQuants, with element names catch, catch.n and catch.wt,
which can then be passed directly to the catch<- replacement method.

Generic function

computeCatch(object, ...)

computeLandings(object, ...)

computeDiscards(object, ...)

computeStock(object, ...)

computeCatch(object, ...)

computeLandings(object, ...)

computeDiscards(object, ...)

computeStock(object, ...)

computeHarvest,FLStock,missing-method 25

Author(s)

The FLR Team

See Also

FLComp

FLComp

Examples

data(ple4)
summary(computeLandings(ple4))
summary(computeCatch(ple4, slot="all"))
stock(ple4) <- computeStock(ple4)
landings(ple4) <- computeLandings(ple4)
catch.n(ple4) <- computeCatch(ple4, slot="n")
catch(ple4) <- computeCatch(ple4, slot="all")

data(ple4)
summary(computeLandings(ple4))
summary(computeCatch(ple4, slot="all"))
stock(ple4) <- computeStock(ple4)
landings(ple4) <- computeLandings(ple4)
catch.n(ple4) <- computeCatch(ple4, slot="n")
catch(ple4) <- computeCatch(ple4, slot="all")

computeHarvest,FLStock,missing-method

Computes fishing mortality from abundances, catches and natural
mortality

Description

Objects or class ’FLStock’ already contain a ’harvest’ slot to store estimates of fishing mortality at
age, for example those obtained from a stock assessment method. Fishing mortality at age can be
recalculated using two methods:

Usage

S4 method for signature 'FLStock,missing'
computeHarvest(object, units = NULL)

Arguments

units Harvest to be computed as ’f’ or ’hr’, ’character’.

x An object of class ’FLStock’.

26 cpue

Value

An ’FLQuant’ with the calculated fishing mortalities at age.

Author(s)

The FLR Team

See Also

FLStock harvest() FLQuant

Examples

data(ple4)
Compute 'f' from stock.n and Baranov
computeHarvest(ple4)
Recomputes all F at age by solving catch Baranov
recomputeHarvest(ple4)

cpue cpue, a method to generate an observation of a CPUE index of abun-
dance

Description

The observation of stock abundance by CPUE series from commercial fleets is an important step
in the generation of management advice that needs to replicated on an Operating Model during any
simulation exercise. This method gemnerates an observation of biomass or numbers-at-age from an
FLstock being used as OM.

Usage

cpue(object, index, ...)

S4 method for signature 'FLStock,missing'
cpue(
object,
sel.pattern = harvest(object),
effort = units(harvest(object)),
biomass = TRUE

)

Arguments

object The object from which to generate the observation.

effort Units of index to use to mimic effort series in the fishery, "f" or "hr"

sel The selectivity of the survey, defaults to be 1 for all ages.

mass Is the index to be in weight at age?

createFLAccesors 27

Value

An FLQuant for the index of abundance, age-disaggregated

Author(s)

Laurie Kell & Iago Mosqueira, FLR Team.

See Also

FLComp

Examples

data(ple4)

cpue(ple4)
Am aggregated biomass CPUE
quantSums(cpue(ple4))

Not run:
plot(FLQuants(om=stock(ple4), cpue=quantSums(cpue(ple4)),

hr=quantSums(cpue(ple4, effort="hr"))))

End(Not run)

createFLAccesors Create accesor methods for a given class

Description

This function creates a complete set of standard S4 class accessors and replacers. Not intended for
direct use.

Usage

createFLAccesors(class, exclude = character(1), include = missing)

Arguments

class name of the class

exclude Slot names to exclude

include Slot names to include

Author(s)

The FLR Team

28 datasets

datasets FLCore datasets

Description

Example datasets for the classes defined in FLCore.

Details

• ple4, FLStockA dataset for North Sea (ICES Area IV) plaice. Catch, landings, discards,
natural mortality, weight-at-age and maturity, together with the VPA estimated abundances
and fishing mortalities.

• ple4sex, FLStockA dataset of North Sea (ICES Area IV) plaice disaggregated by sex. Catch,
yield, landings, discards, natural mortality, weight-at-age and maturity, together with the VPA
estimated abundances and fishing mortalities.

• ple4.index, FLIndexA dataset of North Sea (ICES Area IV) plaice survey catch per unit effort,
index and index variance.

• ple4.indices, FLIndicesA dataset of three North Sea (ICES Area IV) plaice survey catch per
unit effort series. Index and index variance.

• ple4.biol, FLBiolA dataset of the North Sea plaice population. Numbers, natural mortality,
mass and fecundity-at-age.

• nsher , FLSRStock and recruit data and fitted relationship for autumn spawning North Sea
herring.

Datasets can be loaded by issuing the data command, like in data(ple4).

References

ICES.

See Also

FLStock, FLSR, FLIndex, FLStock, FLIndex, FLBiol

Examples

data(ple4)
summary(ple4)

data(nsher)
is(nsher)

dbind 29

dbind Methods for binding objects of array classes along a given dimension

Description

These methods can bind two or more objects of array-based classes (e.g. FLQuant), along the
specified dimension.

Usage

dbind(x, y, ...)

S4 method for signature 'FLArray,FLArray'
dbind(x, y, ..., dim = 1)

qbind(...)

ybind(...)

ubind(...)

sbind(...)

abind(...)

ibind(...)

Arguments

x First object to bind

y Second object to bind

... Other objects to bind

dim Dimension to bind on, numeric or character.

Details

The objects to bind must contain the same dimmames in all dimensions other than that used to bind,
while dimnames in the selected one must differ. See the examples below for correct and incorrect
uses.

Object are bound in the order they are provided, with no attempt to sort according to the dimnames
of the chosen dimension.

The implementation is based around a single method (dbind), that operates along the dimension
position or name indicated by the dim argument. A series of shortcut functions call the method for
specific dimensions, with names related to the dimensions name they operate on (e.g. ybind for
year).

30 dims

Value

An object of the same class as the inputs

Author(s)

Iago Mosqueira (EC JRC)

See Also

FLQuant FLArray

Examples

By iter
x <- FLQuant(rnorm(80000), dim=c(4,20,1,1,1,1000))
y <- FLQuant(rnorm(80000), dim=c(4,20,1,1,1,1000))

dimnames(y) <- list(iter=1001:2000)
ibind(x,y)

By quant (age)
x <- FLQuant(1, dimnames=list(age=1:3, year=1:10))
y <- FLQuant(2, dimnames=list(age=4:12, year=1:10))
qbind(x, y)

By year
x <- FLQuant(1, dimnames=list(age=1:3, year=1:10))
y <- FLQuant(2, dimnames=list(age=1:3, year=11:20))
z <- FLQuant(3, dimnames=list(age=1:3, year=21:30))
ybind(x, y, z)

By season
x <- FLQuant(1, dimnames=list(year=1:10, season=1:2))
y <- FLQuant(2, dimnames=list(year=1:10, season=3:4))
sbind(x, y)

dims Method dims

Description

List with information on object dimensions

List with information on object dimensions

Usage

dims(obj, ...)

dims(obj, ...)

dims 31

S4 method for signature 'FLQuant'
dims(obj, element, ...)

Details

Method dims returns a named list with information on the dimensions and dimension names of a
given object. The list returned could be extended in the future and currently contains, depending on
the class of the object, some of the following:

quant Length of the first dimension

min First quant

max Last quant

year Number of years

minyear First year in series

maxyear Last year in series

cohort Number of cohorts

mincohort First cohort in series

maxcohort Last cohort in series

unit Length of the third (unit) dimension

season Length of the fourth (season) dimension

area Length of the fifth (area) dimension

iter Length of the sixth (iter) dimension

Values in the returned list are of class numeric, unless dimnames are strings with no numeric
translation, in which case the result is NA.

Please note that the name of the first element in the returned list changes with the name of the first
dimension in the input object. Use quant to obtain the name and extract the relevant element from
the result list.

Method dims returns a named list with information on the dimensions and dimension names of a
given object. The list returned could be extended in the future and currently contains, depending on
the class of the object, some of the following:

quant Length of the first dimension

min First quant

max Last quant

year Number of years

minyear First year in series

maxyear Last year in series

cohort Number of cohorts

mincohort First cohort in series

maxcohort Last cohort in series

unit Length of the third (unit) dimension

32 dimSummaries

season Length of the fourth (season) dimension

area Length of the fifth (area) dimension

iter Length of the sixth (iter) dimension

Values in the returned list are of class numeric, unless dimnames are strings with no numeric
translation, in which case the result is NA.

Please note that the name of the first element in the returned list changes with the name of the first
dimension in the input object. Use quant to obtain the name and extract the relevant element from
the result list.

Generic function

dims(obj)

dims(obj)

Author(s)

The FLR Team

See Also

dimnames, FLQuant

dimnames, FLQuant

Examples

flq <- FLQuant(rnorm(96), dim=c(3,8,1,4), quant='age')
dims(flq)

Number of seasons
dims(flq)$season

Length of first dimension
dims(flq)[[quant(flq)]]

dimSummaries Summaries by dimension

Description

Methods to compute various summary calculations (sum, mean, variance) over selected dimensions
of objects from any array-based classes (e.g. FLQuant). These methods return an object of the same
dimensions as the input but with length one in the dimension chosen to operate along.

dimSummaries 33

Usage

quantSums(x, ...)

yearSums(x, ...)

unitSums(x, ...)

seasonSums(x, ...)

areaSums(x, ...)

iterSums(x, ...)

dimSums(x, ...)

quantMeans(x, ...)

yearMedians(x, ...)

yearMeans(x, ...)

unitMeans(x, ...)

seasonMeans(x, ...)

areaMeans(x, ...)

iterMeans(x, ...)

dimMeans(x, ...)

quantVars(x, ...)

yearVars(x, ...)

unitVars(x, ...)

seasonVars(x, ...)

areaVars(x, ...)

iterVars(x, ...)

dimVars(x, ...)

iterMedians(x, ...)

iterCVs(x, ...)

34 dimSummaries

iterProb(x, ...)

S4 method for signature 'FLQuant'
quantSums(x, na.rm = TRUE)

S4 method for signature 'FLQuant'
yearSums(x, na.rm = TRUE)

S4 method for signature 'FLQuant'
unitSums(x, na.rm = TRUE)

S4 method for signature 'FLQuant'
seasonSums(x, na.rm = TRUE)

S4 method for signature 'FLQuant'
areaSums(x, na.rm = TRUE)

S4 method for signature 'FLQuant'
iterSums(x, na.rm = TRUE)

S4 method for signature 'FLQuant'
quantMeans(x, na.rm = TRUE)

S4 method for signature 'FLQuant'
yearMeans(x, na.rm = TRUE)

S4 method for signature 'FLQuant'
unitMeans(x, na.rm = TRUE)

S4 method for signature 'FLQuant'
seasonMeans(x, na.rm = TRUE)

S4 method for signature 'FLQuant'
areaMeans(x, na.rm = TRUE)

S4 method for signature 'FLQuant'
iterMeans(x, na.rm = TRUE)

S4 method for signature 'FLQuant'
yearMedians(x, na.rm = TRUE)

S4 method for signature 'FLQuant'
iterMedians(x, na.rm = TRUE)

S4 method for signature 'FLQuant'
quantVars(x, na.rm = TRUE)

dimSummaries 35

S4 method for signature 'FLQuant'
yearVars(x, na.rm = TRUE)

S4 method for signature 'FLQuant'
unitVars(x, na.rm = TRUE)

S4 method for signature 'FLQuant'
seasonVars(x, na.rm = TRUE)

S4 method for signature 'FLQuant'
areaVars(x, na.rm = TRUE)

S4 method for signature 'FLQuant'
iterVars(x, na.rm = TRUE)

S4 method for signature 'FLQuant'
iterCVs(x, na.rm = TRUE)

S4 method for signature 'FLQuant'
iterProb(x, na.rm = TRUE)

S4 method for signature 'FLQuantDistr'
yearSums(x, na.rm = TRUE)

S4 method for signature 'FLQuantDistr'
unitSums(x, na.rm = TRUE)

S4 method for signature 'FLQuantDistr'
seasonSums(x, na.rm = TRUE)

S4 method for signature 'FLQuantDistr'
areaSums(x, na.rm = TRUE)

S4 method for signature 'FLQuantDistr'
yearMeans(x, na.rm = TRUE)

S4 method for signature 'FLQuantDistr'
unitMeans(x, na.rm = TRUE)

S4 method for signature 'FLQuantDistr'
seasonMeans(x, na.rm = TRUE)

S4 method for signature 'FLQuantDistr'
areaMeans(x, na.rm = TRUE)

S4 method for signature 'FLQuantDistr'
iterMeans(x, na.rm = TRUE)

36 dimSummaries

S4 method for signature 'FLQuantDistr'
iterMedians(x, na.rm = TRUE)

S4 method for signature 'FLQuantDistr'
quantVars(x, na.rm = TRUE)

S4 method for signature 'FLQuantDistr'
yearVars(x, na.rm = TRUE)

S4 method for signature 'FLQuantDistr'
unitVars(x, na.rm = TRUE)

S4 method for signature 'FLQuantDistr'
seasonVars(x, na.rm = TRUE)

S4 method for signature 'FLQuantDistr'
areaVars(x, na.rm = TRUE)

S4 method for signature 'FLQuantDistr'
iterVars(x, na.rm = TRUE)

S4 method for signature 'FLPar'
iterMeans(x, na.rm = TRUE)

S4 method for signature 'FLPar'
iterMedians(x, na.rm = TRUE)

S4 method for signature 'FLPar'
iterVars(x, na.rm = TRUE)

S4 method for signature 'FLPar'
iterSums(x, na.rm = TRUE)

Arguments

x An object.

na.rm Should NAs be removed before calculation? Defaults to TRUE.

Details

This set of methods computes three different summaries (sum, mean and variance) of an FLQuant
object along each of the six dimensions (quant, year, unit, season, area, or iter). Medians and CVs
can also be computed along the sixth dimension, iter.

These methods encapsulate a call to apply with the corresponding dimensions and function: mean,
median, var, and sum, while iterCVs are computed as sqrt(iterVars) / iterMeans.

In contrast with R standard behaviour, the sum of a dimension where all elements are NA will be NA
and not 0. See example below.

Methods working along the iter dimension are also defined for objects of class FLPar.

discardsRatio 37

Methods to operate over the first dimension refer to it as the quant dimension, regardless of the
actual name used in the object.

Generic methods

quantSums(x), quantMeans(x), quantVars(x) yearSums(x), yearMeans(x), yearVars(x) unitSums(x),
unitMeans(x), unitVars(x) seasonSums(x), seasonMeans(x), seasonVars(x) areaSums(x), areaMeans(x),
areaVars(x) iterMeans(x), iterVars(x), iterMedians(x), iterSums(x) dimSums(x), dimMeans(x), dim-
Vars(x)

Author(s)

The FLR Team

See Also

FLQuant, sum, mean, var

Examples

flq <- FLQuant(rnorm(4000), dim=c(5,10,2,2,2,10), quant='age')

quantSums(flq)
quantMeans(flq)
yearSums(flq)
iterMeans(flq)
dim(quantSums(flq))

NA dims stay as NA when summed along
x <- FLQuant(c(NA, NA, NA, rnorm(6)), dim=c(3, 3))
quantSums(x)
although in fact a sum of no elements (as na.rm=TRUE) is zero
apply(x, 2:6, sum, na.rm=TRUE)

discardsRatio Compute the ratio of discards to total catch in numbers or weight

Description

A calculation is made of the proportion of discards over total catch at age, either as numbers (value
= ’numbers’) or weight (value = ’weight’), or for the total discards and catch in biomass (value =
’total’).

Usage

discardsRatio(object, value = c("numbers", "weight", "total"))

38 drop,FLArray-method

Arguments

object An object of class ’FLStock’

value One of ’numbers’ (default), ’weight’ or ’total’.

Value

The discards ratio (between 0 and 1), ’FLQuant’

Author(s)

The FLR Team

See Also

FLStock

Examples

data(ple4)
Discards ratio at age in numbers
discardsRatio(ple4)
Total proportion of discards by year
discardsRatio(ple4, value="total")

drop,FLArray-method drop method for FLCore array-based classes

Description

Delete the dimensions of an array which have only one level.

Usage

S4 method for signature 'FLArray'
drop(x)

Details

This method calls R’s base::drop on the @.Data slot of an FLArray. Dimensions of length one are
thus dropped, as is the class attribute and the units slot, and an array of equal or less dimensions,
a matrix or a vector is returned.

On an FLQuant object with

Author(s)

The FLR Team

evalPredictModel 39

See Also

base::drop

Examples

x <- FLQuant(1:3, dim=c(3,3))
drop(x)
is(drop(x))
dim(drop(x))

Result of drop can be used for matrix algebra
for example to calculate aging error

data(ple4)
aging.error <- diag(0.8, 10)
diag(aging.error[-1,]) <- c(rep(0.1, 8), 0.2)
diag(aging.error[, -1]) <- c(0.2, rep(0.1, 8))
t(aging.error) %*% drop(catch.n(ple4))

evalPredictModel Evaluates a predictModel slot inside the object cointaining it

Description

Models in objects of the predictModel class can make use of slots and methods of the FLR class in
which it is contained as a slot. This function can be used by methods wishing to evaluate a single
predictModel slot in the context of the class it is part of.

Usage

evalPredictModel(object, slot, ...)

Arguments

object The FLR S4 over whicvh the predictModel evaluation should take place

slot The predictModel object to be evaluated

Value

The result of evaluating the model, usually an FLQuant

Author(s)

The FLR Team

See Also

predictModel

40 Extract

exp,FLQuant-method exp and log methods FLCore array-based classes

Description

Compute the exponential and logarithmic functions

Usage

S4 method for signature 'FLQuant'
exp(x)

S4 method for signature 'FLQuant'
log(x, ...)

Details

This method simply calls R’s base::exp and base::drop, but take care of returning the right units of
measurement, that is "" or character(1).

Author(s)

The FLR Team

See Also

base::exp base::log

Examples

x <- FLQuant(c(4,2,7,4,2,9), units="1000")
log(x)
units(log(x))

Extract Extract

Description

Extract or replace parts of an FLR Object

Extract 41

Usage

S4 method for signature 'FLArray,ANY,ANY,ANY'
x[i, j, k, l, m, n, ..., drop = FALSE]

S4 method for signature 'FLArray,array,missing,missing'
x[i]

S4 replacement method for signature 'FLArray,ANY,ANY,ANY'
x[i, j, k, l, m, n, ...] <- value

S4 replacement method for signature 'FLArray,ANY,ANY,FLArray'
x[i, j, k, l, m, n, ...] <- value

S4 method for signature 'FLQuant'
x$name

S4 method for signature 'FLQuantDistr,ANY,ANY,ANY'
x[i, j, k, l, m, n]

S4 method for signature 'FLQuantDistr,array,missing,missing'
x[i]

S4 method for signature 'FLPar,ANY,ANY,ANY'
x[i, j, k, l, m, n, ..., drop = FALSE]

S4 method for signature 'FLPar,array,missing,missing'
x[i]

S4 replacement method for signature 'FLPar,ANY,ANY,ANY'
x[i, j, k, l, m, n, ...] <- value

S4 method for signature 'FLPar'
x$name

S4 replacement method for signature 'FLPar'
x$name <- value

S4 method for signature 'FLComp,ANY,ANY,ANY'
x[i, j, k, l, m, n, ..., drop = FALSE]

S4 replacement method for signature 'FLComp,ANY,ANY,ANY'
x[i, j, k, l, m, n, ...] <- value

S4 method for signature 'FLStock,ANY,ANY,ANY'
x[i, j, k, l, m, n, ..., drop = FALSE]

S4 replacement method for signature 'FLStock,ANY,ANY,FLStock'
x[i, j, k, l, m, n, ...] <- value

42 Extract

S4 method for signature 'FLI,ANY,ANY,ANY'
x[i, j, k, l, m, n, ..., drop = FALSE]

S4 method for signature 'predictModel,ANY,missing,ANY'
x[i, k, l, m, n, ..., drop = FALSE]

S4 replacement method for signature 'FLlst,ANY,missing'
x[[i, j]] <- value

S4 replacement method for signature 'FLlst'
x$name <- value

S4 replacement method for signature 'FLlst,ANY,missing,ANY'
x[i, j] <- value

S4 method for signature 'FLlst,ANY,missing,ANY'
x[i, drop]

Arguments

x object from which to extract or replace element(s)

i, j, k, l, m, n indices specifying elements to extract or replace on any of the six dimensions.

... indices specifying elements to extract or replace by dimension name.

drop If ’TRUE’ the result is coerced to the lowest possible dimension, and so might
change class (e.g. drop=’TRUE’ on an FLQuant might return an array of less
dimensions, a matrix or a vector.

value An object of the same class, or simpler if drop=TRUE, than ’x’.

name See Extract for further details.

Details

Operators acting on FLQuant, FLCohort, FLPar, FLComp, and derived classes to extract or replace
sections of an object.

Please note the differences between referencing sections of an object by position using values of
class numeric, or by using dimnames of class character. See examples below.

All classes that are derived from FLComp (for example, FLStock and FLBiol) can be subset along
the six dimensions of their FLQuant slots.

Classes that are derived from FLlst (for example, FLStocks and FLBiols) can be subset in a similar
way to ordinary list objects.

’$’ for the FLPar and FLQuant classes operate only along the first dimension (’params’ or ’quant’),
and are provided to be used specially in formulas.

Generic function

x,i,j,drop

ffwd 43

[<-(x,i,j,value)

[[<-(x,i,j,value)

\$<-(x,name,value)

Author(s)

The FLR Team

See Also

Extract

Examples

flq <- FLQuant(rnorm(200), dimnames=list(age=0:4, year=1991:2000,
season=1:4))

Extracting by position...
flq[1,]
flq[,1:5]
flq[1:2,,,c(1,3)]

...by dimnames
flq['0',]
flq[,'1991']
flq[,as.character(1991:1995),,'1']

Dimensions of length one can be drop
flq[1, drop=TRUE]

Replacing part of the object
flq['0',,,1]<-0

ffwd Project forward an FLStock for a fbar target

Description

Projection of an FLStock object for a fishing mortality target does not always require the features
of fwd().Fast-forward an FLStock object for a fishing mortality yearly target only.

Usage

ffwd(object, sr, fbar = control, control = fbar, deviances = "missing")

44 FLArray

Arguments

object An FLStock

sr A stock-recruit relationship, FLSR or predictModel.

fbar Yearly target for average fishing mortality, FLQuant.

control Yearly target for average fishing mortality, fwdControl.

deviances Deviances for the strock-recruit relationsip, FLQuant.

Value

The projected FLStock object.

Author(s)

Iago MOSQUEIRA (MWR), Henning WINKEL (JRC).

See Also

fwd

Examples

data(ple4)
sr <- predictModel(model=bevholt, params=FLPar(a=140.4e4, b=1.448e5))
Project for fixed Fbar=0.21
run <- ffwd(ple4, sr=sr, fbar=FLQuant(0.21, dimnames=list(year=1958:2017)))
plot(run)

FLArray Class FLArray

Description

A basic 6D array class. No objects of this class are created in FLCore, as it is used only for method
inheritance.

Slots

.Data Internal S4 data representation, of class array.

Validity

Dimensions: Array must have 6 dimensions

Content: Array must be of class numeric

Author(s)

The FLR Team

FLBiol 45

See Also

FLQuant, FLCohort

FLBiol Class FLBiol

Description

A class for modelling age / length or biomass structured populations.

Usage

FLBiol(object, ...)

S4 method for signature 'FLQuant'
FLBiol(object, plusgroup = dims(object)$max, ...)

Arguments

object FLQuant object used for sizing

... Other objects to be assigned by name to the class slots

plusgroup Plusgroup age, to be stored in range

Details

The FLBiol class is a representation of a biological fish population. This includes information on
abundances, natural mortality and fecundity.

Slots

n Numbers in the population. FLQuant.

m Mortality rate of the population. FLQuant.

wt Mean weight of an individual. FLQuant.

mat predictModel.

fec predictModel.

rec predictModel.

spwn Proportion of time step at which spawning ocurrs. FLQuant.

name Name of the object. character.

desc Brief description of the object. character.

range Named numeric vector describing the range of the object. numeric.

46 FLBiols

Accessors

All slots in the class have accessor and replacement methods defined that allow retrieving and
substituting individual slots.

The values passed for replacement need to be of the class of that slot. A numeric vector can also be
used when replacing FLQuant slots, and the vector will be used to substitute the values in the slot,
but not its other attributes.

Constructor

A construction method exists for this class that can take named arguments for any of its slots. All
slots are then created to match the requirements of the class validity. If an unnamed FLQuant object
is provided, this is used for sizing but not stored in any slot.

Validity

Dimensions All FLQuant slots must have iters equal to 1 or ’n’.

Iters The dimname for iter1 should be ’1’.

Dimnames The name of the quant dimension must be the same for all FLQuant slots.

Author(s)

The FLR Team

See Also

as.FLBiol, as.FLSR, coerce, plot, ssb catch.n,FLBiol-method

Examples

An FLBiol example dataset
data(ple4.biol)

summary(ple4.biol)

FLBiols Class FLBiols

Description

A list of FLBiol objects.

FLCohort 47

Usage

FLBiols(object, ...)

S4 method for signature 'FLBiol'
FLBiols(object, ...)

S4 method for signature 'missing'
FLBiols(object, ...)

S4 method for signature 'list'
FLBiols(object, ...)

Arguments

object unnamed object to be added to the list

... other named or unnamed objects

Slots

.Data Internal S4 data representation, of class list.

desc As textual description of the object contents

lock Can the object be extended/trimmed? TRUE or FALSE.

names A character vector for the element names

Constructor

A constructor method exists for this class that can take named arguments for any of the list elements.

Author(s)

The FLR Team

See Also

FLlst, list, vector

FLCohort Class FLCohort

Description

A class for modelling cohorts.

48 FLCohort

Usage

FLCohort(object, ...)

S4 method for signature 'FLQuant'
FLCohort(object, ...)

S4 method for signature 'FLCohort'
FLCohort(object, units = units(object))

S4 method for signature 'array'
FLCohort(
object,
dim = rep(1, 6),
dimnames = "missing",
units = "NA",
iter = 1,
fill.iter = TRUE

)

S4 method for signature 'vector'
FLCohort(
object,
dim = c(length(object), rep(1, 5)),
dimnames = "missing",
units = "NA",
iter = 1

)

S4 method for signature 'missing'
FLCohort(object, dim = rep(1, 6), dimnames = "missing", units = "NA", iter = 1)

Arguments

object Input numeric object

... Additonal arguments

Details

This class represents cohorts in columns. It simply shifts the typical matrix representation where
cohorts are found on the diagonals, into a matrix where cohorts are found in columns. It is very
usefull for all analysis that want to make use of cohorts instead of years.

Slots

.Data Internal S4 data representation. array.

units The data units in some understandable metric. character

FLCohorts 49

Constructor

Objects of this class are generally constructed from an FLQuant object.

Author(s)

The FLR Team

See Also

[, as.data.frame, bubbles, ccplot, FLCohort,FLQuant-method, flc2flq, plot, quant, trim, units, units<-
,FLCohort,character-method, xyplot, array

Examples

data(ple4)
flq <- catch.n(ple4)
flc <- FLCohort(flq)
plot(trim(flc, cohort=1960:2000))

FLCohorts Class FLCohorts

Description

FLCohorts is a class that extends list through FLlst but implements a set of features that give a
little more structure to list objects. The elements of FLCohorts must all be of class FLCohort. It
implements a lock mechanism that, when turned on, does not allow the user to increase or decrease
the object length.

Usage

FLCohorts(object, ...)

Arguments

object unnamed object to be added to the list

... other named or unnamed objects

Slots

.Data The data. list

names Names of the list elements. character

desc Description of the object. character

lock Lock mechanism, if turned on the length of the list can not be modified by adding or removing
elements. logical

50 FLComp

Constructor

A constructor method exists for this class that can take named arguments for any of the list elements.

Author(s)

The FLR Team

See Also

*, Arith, as.data.frame, bubbles, catch<-, iter, model.frame, show, summary, xyplot, FLlst, list

FLComp Class FLComp

Description

A virtual class that forms the basis for most FLR classes composed of slots of class FLQuant. No
objects of this class can be constructed.

Validity

Dimensions All FLQuant slots must have iters equal to 1 or ’n’.

Iters The dimname for iter1 should be ’1’.

Dimnames The name of the quant dimension must be the same for all FLQuant slots.

Slots

name A character vector for the object name.

desc A textual description of the object contents.

range A named numeric vector with various values of quant and year ranges, plusgroup, fishing
mortality ranges, etc. Elements are specific to each child class.

Author(s)

The FLR Team

See Also

[, [<-, as.data.frame, iter, propagate, qapply, summary, transform, trim, units,FLComp-method,
units<-,FLComp,list-method, window

FLComps 51

FLComps Class FLComps

Description

A virtual class that forms the basis for many FLR list classes. No objects of this class can be
constructed.

Arguments

object unnamed object to be added to the list

... other named or unnamed objects

Validity

Elements All elements must be of a class that inherits from FLComp

Slots

.Data The data. list.

names Names of the list elements. character.

desc Description of the object. character.

lock Lock mechanism, if turned on the length of the list can not be modified by adding or removing
elements. logical.

Constructor

A constructor method exists for this class that can take named arguments for any of the list elements.

Author(s)

The FLR Team

See Also

FLlst, FLComp

52 FLI

FLI Class FLI

Description

A VIRTUAL class that holds data and parameters related to abundance indices.

Arguments

object FLQuant object used for sizing
... Other objects to be assigned by name to the class slots

Slots

distribution Statistical distribution of the index values (character).
index Index values (FLQuant).
index.var Variance of the index (FLQuant).
catch.n Catch numbers used to create the index (FLQuant).
catch.wt Catch weight of the index (FLQuant).
effort Effort used to create the index (FLQuant).
sel.pattern Selection pattern for the index (FLQuant).
index.q Catchability of the index (FLQuant).
name Name of the stock (character).
desc General description of the object (character).
range Range of the object (numeric)

Accessors

All slots in the class have accessor and replacement methods defined that allow retrieving and
substituting individual slots.

The values passed for replacement need to be of the class of that slot. A numeric vector can also be
used when replacing FLQuant slots, and the vector will be used to substitute the values in the slot,
but not its other attributes.

Constructor

A construction method exists for this class that can take named arguments for any of its slots. All
slots are then created to match the requirements of the class validity. If an unnamed FLQuant object
is provided, this is used for sizing but not stored in any slot.

Validity

Dimensions All FLQuant slots must have iters equal to 1 or ’n’.
Iters The dimname for iter1 should be ’1’.
Dimnames The name of the quant dimension must be the same for all FLQuant slots.

FLIndex 53

Author(s)

The FLR Team

See Also

computeCatch, dims, iter, plot, propagate, summary, transform, trim, window, FLComp

FLIndex Class FLIndex

Description

A class for modelling abundance indices.

Usage

FLIndex(object, ...)

S4 method for signature 'FLQuant'
FLIndex(object, plusgroup = dims(object)$max, ...)

S4 method for signature 'missing'
FLIndex(object, ...)

Details

The FLIndex object holds data and parameters related to abundance indices.

Slots

type Type of index (character).

distribution Statistical distribution of the index values (character).

index Index values (FLQuant).

index.var Variance of the index (FLQuant).

catch.n Catch numbers used to create the index (FLQuant).

catch.wt Catch weight of the index (FLQuant).

effort Effort used to create the index (FLQuant).

sel.pattern Selection pattern for the index (FLQuant).

index.q Catchability of the index (FLQuant).

name Name of the stock (character).

desc General description of the object (character).

range Named numeric vector containing the quant and year ranges, the plusgroup, and the period
of the year, expressed as proportions of a year, that corresponds to the index (numeric).

54 FLIndexBiomass

Author(s)

The FLR Team

See Also

computeCatch, dims, iter, plot, propagate, summary, transform, trim, window, FLComp

Examples

Create an FLIndex object.
fli <- FLIndex(index=FLQuant(rnorm(8), dim=c(1,8)), name="myTestFLindex")
summary(fli)
index(fli)

Creat an FLIndex object using an existing FLQuant object.
data(ple4)
Create a perfect index of abundance from abundance at age
fli2 <- FLIndex(index=stock.n(ple4))

Add some noise around the signal
index(fli2) <- index(fli2)*exp(rnorm(1, index(fli2)-index(fli2), 0.1))

FLIndexBiomass Class FLIndexBiomass

Description

A class for modelling biomass indices.

Usage

FLIndexBiomass(object, ...)

S4 method for signature 'FLQuant'
FLIndexBiomass(object, plusgroup = dims(object)$max, ...)

S4 method for signature 'missing'
FLIndexBiomass(object, ...)

Arguments

object FLQuant object used for sizing

... Other objects to be assigned by name to the class slots

Details

The FLIndexBiomass object holds data and parameters related to biomass indices.

FLIndexBiomass 55

Slots

distribution Statistical distribution of the index values (character).

index Index values (FLQuant).

index.var Variance of the index (FLQuant).

catch.n Catch numbers used to create the index (FLQuant).

catch.wt Catch weight of the index (FLQuant).

effort Effort used to create the index (FLQuant).

sel.pattern Selection pattern for the index (FLQuant).

index.q Catchability of the index (FLQuant).

name Name of the stock (character).

desc General description of the object (character).

range Range of the object (numeric)

Accessors

All slots in the class have accessor and replacement methods defined that allow retrieving and
substituting individual slots.

The values passed for replacement need to be of the class of that slot. A numeric vector can also be
used when replacing FLQuant slots, and the vector will be used to substitute the values in the slot,
but not its other attributes.

Constructor

A construction method exists for this class that can take named arguments for any of its slots. All
slots are then created to match the requirements of the class validity. If an unnamed FLQuant object
is provided, this is used for sizing but not stored in any slot.

Validity

Dimensions All FLQuant slots must have iters equal to 1 or ’n’.

Iters The dimname for iter1 should be ’1’.

Dimnames The name of the quant dimension must be the same for all FLQuant slots.

Author(s)

The FLR Team

See Also

computeCatch, dims, iter, plot, propagate, summary, transform, trim, window, FLComp

56 FLIndices

Examples

idx <- FLIndexBiomass(index=FLQuant(1:10, quant='age'))

data(ple4)
ida <- FLIndexBiomass(index=ssb(ple4),

catch.n=catch.n(ple4))

FLIndices Class FLIndices

Description

FLIndices is a class that extends list through FLlst but implements a set of features that give a
little more structure to list objects. The elements of FLIndices must all be of class FLIndex. It
implements a lock mechanism that, when turned on, does not allow the user to increase or decrease
the object length.

Usage

FLIndices(object, ...)

S4 method for signature 'FLI'
FLIndices(object, ...)

S4 method for signature 'missing'
FLIndices(object, ...)

S4 method for signature 'list'
FLIndices(object, ...)

Arguments

object unnamed object to be added to the list

... other named or unnamed objects

Slots

.Data The data. list.

names Names of the list elements. character.

desc Description of the object. character.

lock Lock mechanism, if turned on the length of the list can not be modified by adding or removing
elements. logical.

Constructor

A constructor method exists for this class that can take named arguments for any of the list elements.

FLlst 57

Author(s)

The FLR Team

See Also

FLlst, list

Examples

data(ple4.index)
flis <- FLIndices(INDa=ple4.index, INDb=window(ple4.index, end=2000))

FLlst Class FLlst

Description

FLlst is a class that extends list but implements a set of features that give a little more structure to
list objects. First the elements of FLlst must all be of the same class. Second it implements a lock
mechanism that, when turned on, does not allow the user to increase or decrease the object length.

Usage

FLlst(object, ...)

Arguments

object unnamed object to be added to the list

... other named or unnamed objects

Slots

.Data The data. list.

names Names of the list elements. character.

desc Description of the object. character.

lock Lock mechanism, if turned on the length of the list can not be modified by adding or removing
elements. logical.

Constructor

A constructor method exists for this class that can take named arguments for any of the list elements.

Author(s)

The FLR Team

58 FLModel

See Also

[, [<-, [[<-, $<-, coerce, lapply, window, list

Examples

fll01 <- new("FLlst", list(a=1:10, b=10:20))
fll02 <- new("FLlst", list(1:10, 10:20), names=c("a","b"))
fll03 <- FLlst(a=1:10, b=10:20)
fll04 <- FLlst(list(a=1:10, b=10:20))
fll05 <- FLlst(c(1:10), c(10:20))
names(fll05) <- names(fll01)
names(fll01)

FLModel Class FLModel

Description

A virtual class for statistical models

Usage

FLModel(model, ...)

Details

The FLModel class provides a virtual class that developers of various statistical models can use to
implement classes that allow those models to be tested, fitted and presented.

Slots in this class attempt to map all the usual outputs for a modelling exercise, together with the
standard inputs. Input data are stored in slots created by a specified class based on FLModel. See
for example FLSR for a class used for stock-recruitment models.

The initial slot contains a function used to obtain initial values for the numerical solver. It can
also contain two attributes, upper and lower that limit the sarch area for each parameter.

Various fitting algorithms, similar to those present in the basic R packages, are currently available
for FLModel, including fmle, nls-FLCore and glm.

Slots

name Name of the object, character.

desc Description of the object, character.

range Range, numeric.

distribution Associated error probability dfistribution, factor.

fitted Estimated values, FLQuant.

residuals Residuals obtained from the model fit, FLQuant.

FLModel 59

model Model formula, formula.

gr Function returning the gradient of the likelihood, function.

logl Log-likelihood function. function.

initial Function returning initial parameter values for the optimizer, as an object of class FLPar,
function.

params Estimated parameter values, FLPar.

logLik Value of the log-likelihood, logLik.

vcov Variance-covariance matrix, array.

hessian Hessian matrix obtained from the parameter fitting, array.

details extra information on the model fit procedure, list.

Author(s)

The FLR Team

See Also

AIC, BIC, fmle, nls, FLComp

Examples

Normally, FLModel objects won't be created if "class" is not set
summary(FLModel(length~width*alpha))

Objects of FLModel-based classes use their own constructor,
which internally calls FLModel

fsr <- FLModel(rec~ssb*a, class='FLSR')
is(fsr)
summary(fsr)

An example constructor method for an FLModel-based class
Create class FLGrowth with a single new slot, 'mass'

setClass('FLGrowth', representation('FLModel', mass='FLArray'))

Define a creator method based on FLModel
setGeneric("FLGrowth", function(object, ...) standardGeneric("FLGrowth"))
setMethod('FLGrowth', signature(object='ANY'),

function(object, ...) return(FLModel(object, ..., class='FLGrowth')))
setMethod('FLGrowth', signature(object='missing'),

function(...) return(FLModel(formula(NULL), ..., class='FLGrowth')))

Define an accessor method
setMethod('mass', signature(object='FLGrowth'),

function(object) return(slot(object, 'mass')))

60 FLModelSim

FLModelSim Class FLModelSim

Description

A virtual class for statistical simulation models

Usage

FLModelSim(object, ...)

S4 method for signature 'missing'
FLModelSim(object, ...)

Details

The FLModelSim class provides a virtual class that developers of various statistical models can use
to implement classes that allow those models to be tested, fitted and presented.

Slots in this class attempt to map all the usual outputs for a modelling exercise, together with
the standard inputs. Input data are stored in slots created by a specified class that is based on
FLModelSim. See for example FLSR for a class used for stock-recruitment models.

Various fitting algorithms, similar to those present in the basic R packages, are currently available
for FLModelSim, including fmle, nls-FLCore and glm.

Slots

params Estimated parameter values. FLPar.

distr character

vcov array

model formula

Author(s)

The FLR Team

See Also

AIC, BIC, fmle, nls

FLModelSims 61

FLModelSims Class FLModelSims

Description

A list of FLModelSim objects.

Usage

FLModelSims(object, ...)

S4 method for signature 'ANY'
FLModelSims(object, ...)

S4 method for signature 'missing'
FLModelSims(object, ...)

S4 method for signature 'list'
FLModelSims(object)

S4 method for signature 'FLModelSims'
FLModelSims(object)

Arguments

object unnamed object to be added to the list
... other named or unnamed objects

Slots

.Data The data. list.
names Names of the list elements. character.
desc Description of the object. character.
lock Lock mechanism, if turned on the length of the list can not be modified by adding or removing

elements. logical.

Constructor

A constructor method exists for this class that can take named arguments for any of the list elements.

Author(s)

The FLR Team

See Also

FLlst, list, vector

62 FLPar

FLPar Class FLPar

Description

A class for storing parameters of a model.

Usage

FLPar(object, ...)

Details

The FLPar class is based on the array class which can store Monte Carlo samples and the names of
the relevant parameter vectors.

Methods for this class include subsetting and replacement as for the FLQuant class. There are
methods for extracting statistics of the sample (mean, median etc.) and for plotting the parameter
samples.

Slots

.Data Describe slot. array.

units Units of measurement. character.

Author(s)

The FLR Team

See Also

[, [<-, as.data.frame, densityplot, histogram, iter, iter<-, mean, median, plot, splom, summary,
units,FLPar-method, units<-,FLPar,character-method, var

Examples

FLPar(rnorm(4), params=c('a','b','c','sigma2'))

FLPar(rnorm(20), dimnames=list(params=c('a','b'), year=1990:1999, iter=1),
units='NA')

with iters
FLPar(rnorm(80), params=c('a', 'b'), iter=1:40)

FLParJK 63

FLParJK Class FLParJK

Description

A class for storing parameters of a jackknifed model fit.

Usage

S4 method for signature 'ANY'
FLParJK(object, orig)

S4 method for signature 'FLParJK'
orig(object)

Slots

.Data Jackknifed object, FLPar.

units units of measurement, character.

orig original object being jackknifed, FLPar.

Validity

You can inspect the class validity function by using getValidity(getClassDef('FLParJK'))

Accessors

All slots in the class have accessor and replacement methods defined that allow retrieving and
substituting individual slots.

The values passed for replacement need to be of the class of that slot. A numeric vector can also be
used when replacing FLQuant slots, and the vector will be used to substitute the values in the slot,
but not its other attributes.

Constructor

Objects of this class are commonly created by calling the jackknife() method A construction
method exists for this class that can take named arguments for any of its slots. All slots are then
created to match the requirements of the class validity.

Author(s)

The FLR Team

See Also

FLPar

64 FLPars

FLPars Class FLPars

Description

A list of FLPar objects.

Usage

FLPars(object, ...)

S4 method for signature 'ANY'
FLPars(object, ...)

S4 method for signature 'missing'
FLPars(object, ...)

S4 method for signature 'list'
FLPars(object)

S4 method for signature 'FLPars'
FLPars(object)

Arguments

object unnamed object to be added to the list

... other named or unnamed objects

Slots

.Data Internal S4 data representation, of class list.

desc As textual description of the object contents

lock Can the object be extended/trimmed? TRUE or FALSE.

names A character vector for the element names

Constructor

A constructor method exists for this class that can take named arguments for any of the list elements.

Author(s)

The FLR Team

See Also

FLlst, list, vector

FLQuant 65

FLQuant FLQuant class for numerical data

Description

The FLQuant class is a six-dimensional array designed to store most quantitative data used in
fisheries and population modelling.

Usage

FLQuant(object, ...)

S4 method for signature 'missing'
FLQuant(
object,
dim = rep(1, 6),
dimnames = "missing",
quant = NULL,
units = "NA",
iter = 1

)

S4 method for signature 'vector'
FLQuant(
object,
dim = rep(1, 6),
dimnames = "missing",
quant = NULL,
units = "NA",
iter = 1,
fill.iter = TRUE

)

S4 method for signature 'array'
FLQuant(
object,
dim = rep(1, 6),
dimnames = "missing",
quant = NULL,
units = "NA",
iter = 1,
fill.iter = TRUE

)

S4 method for signature 'matrix'
FLQuant(object, dim = lapply(dimnames, length), dimnames = "missing", ...)

66 FLQuant

S4 method for signature 'FLQuant'
FLQuant(
object,
quant = attributes(object)[["quant"]],
units = attributes(object)[["units"]],
dimnames = attributes(object)[["dimnames"]],
iter = dim(object)[6],
fill.iter = TRUE,
dim = attributes(object)[["dim"]]

)

Arguments

object Input numeric object

... Additional arguments

dim Vector of dimension lengths

dimnames List of dimension names

quant Character vector for name of first dimension

units Character vctor of units of measurement, see uom

iter Number of iterations, i.e. length of the 6th dimension

fill.iter Should iterations be filled with the same content as the first?

Details

The six dimensions are named. The name of the first dimension can be altered by the user from
its default, quant. This could typically be age or length for data related to natural populations.
The only name not accepted is ’cohort’, as data structured along cohort should be stored using the
FLCohort class instead. Other dimensions are always names as follows: year, for the calendar
year of the datapoint; unit, for any kind of division of the population, e.g. by sex; season, for any
temporal strata shorter than year; area, for any kind of spatial stratification; and iter, for replicates
obtained through bootstrap, simulation or Bayesian analysis.

In addition, FLQuant objects contain a units attribute, of class character, intended to contain the
units of measurement relevant to the data.

Slots

.Data A 6-D array for numeric data. array.

units Units of measurement. character.

Validity

Dimensions: Array must have 6 dimensions

Content: Array must be of class numeric

Dimnames: Dimensions 2 to 6 must be named "year", "unit", "season", "area" and "iter"

FLQuant 67

Constructor

The FLQuant method provides a flexible constructor for objects of the class. Inputs can be of class:

vector: A numeric vector will be placed along the year dimension by default.

matrix: A matrix will be placed along dimensions 1 and 2, unless otherwise specified by ’dim’.
The matrix dimnames will be used unless overriden by ’dimnames’.

array: As above

missing: If no input is given, an empty FLQuant (NA) is returned, but dimensions and dimnames
can still be specified.

Additional arguments to the constructor:

units: The units of measurement, a character string.

dim: The dimensions of the object, a numeric vector of length 6.

dimnames: A list object providing the dimnames of the array. Only those different from the
default ones need to be specified.

quant: The name of the first dimension, if different from ’quant’, as a character string.

Author(s)

The FLR Team

See Also

FLQuant

Examples

creating a new FLQuant
flq <- FLQuant()
flq <- FLQuant(1:10, dim=c(2,5))
summary(flq)

Vectors are used column first...
dim(FLQuant(1:10))
...while matrices go row first.
dim(FLQuant(matrix(1:10)))

FLQuant(matrix(rnorm(100), ncol=20))

FLQuant(array(rnorm(100), dim=c(5,2,1,1,1,10)))
FLQuant(array(rnorm(100), dim=c(5,2)), iter=10)

working with FLQuant objects
flq <- FLQuant(rnorm(200), dimnames=list(age=1:5, year=2000:2008), units='diff')
summary(flq)

flq[1,]
flq[,1]
flq[1,1] <- 0

68 FLQuantDistr

units(flq)
quant(flq)

plot(flq)

FLQuant()
summary(FLQuant())

FLQuant(1:10)

FLQuant(array(rnorm(9), dim=c(3,3,3)))
FLQuant(matrix(rnorm(12), nrow=4, ncol=3))

FLQuant(FLQuant(array(rnorm(9), dim=c(3,3,3)), units='kg'), units='t')

FLQuantDistr A class for samples of a probability distribution

Description

This extended FLQuant class holds both a measure of central tendendy (mean, median) and of
dispersion (tipically variance), to be later used to generate, for example, random numbers with
those mean and variances.

Usage

FLQuantDistr(object, var, ...)

S4 method for signature 'ANY,ANY'
FLQuantDistr(object, var, ...)

S4 method for signature 'FLQuant,FLQuant'
FLQuantDistr(object, var, units = object@units, distr = "norm")

Arguments

object Input numeric object

... Additonal arguments

Slots

.Data Unnamed slot for storing the mean (or other measure of expectation) (FLQuant).

var Variance, or other measure of dispersion, (FLQuant).

distr Name of the probability distribution, see Details (character).

FLQuantDistr 69

Validity

slot dims .Data and var slots must have the same dimensions.

slot dimnames .Data and var slots must have the same dimnames.

You can inspect the class validity function by using getValidity(getClassDef('FLQuantDistr'))

Accessors

All slots in the class have accessor and replacement methods defined that allow retrieving and
substituting individual slots.

The values passed for replacement need to be of the class of that slot. A numeric vector can also be
used when replacing FLQuant slots, and the vector will be used to substitute the values in the slot,
but not its other attributes.

The contents of the unnamed slot (.Data) can be accessed through the e() method, see Example
below.

Constructor

A construction method exists for this class that can take named arguments for any of its slots. All
slots are then created to match the requirements of the class validity. If an unnamed FLQuant object
is provided, this is used for the .Data slot.

Methods

Methods exist for various calculations based on values stored in the class:

Arith .

Arithmetic

The methods under the Arith group have been defined for objects of this class, both for operations
between two FLQuantDistr objects and with objects of class FLQuant (FLArray) as follows:

+, FLQuantDistr,FLArray .

-, FLQuantDistr,FLArray .

, FLQuantDistr,FLArray. \item/, FLQuantDistr,FLArray. \item+, FLQuantDistr,FLQuantDistr. \item-, FLQuantDistr,FLQuantDistr. \item, FLQuantDistr,FLQuantDistr
.

Author(s)

The FLR Team

See Also

FLQuant

70 FLQuantJK

Examples

data(ple4)
fqd <- FLQuantDistr(catch.n(ple4), var=catch.n(ple4) * 10, distr='norm')

FLQuantJK A class for jackknifing fisheries data

Description

This extended FLQuant class holds both a jackknifed FLQuant, one in which each iter is missing
one element, and the original object, as a separate FLQuant in the orig slot.

Usage

S4 method for signature 'ANY'
FLQuantJK(object, orig)

S4 method for signature 'FLQuantJK'
orig(object)

S4 method for signature 'FLQuants'
orig(object)

Arguments

object Input numeric object

... Additonal arguments

Slots

.Data Unnamed slot containing the jackknifed object(FLQuant).

orig Original object, (FLQuant).

Validity

slot dims .Data and orig slots must have the same dimensions 1-5.

slot dimnames .Data and var slots must have the same dimnames 1-5.

You can inspect the class validity function by using getValidity(getClassDef('FLQuantJK'))

Accessors

All slots in the class have accessor and replacement methods defined that allow retrieving and
substituting individual slots.

The values passed for replacement need to be of the class of that slot. A numeric vector can also be
used when replacing FLQuant slots, and the vector will be used to substitute the values in the slot,
but not its other attributes.

FLQuantPoint 71

Constructor

Objects of this class must be constructed from an FLQuant that is to be jackknifed, through the
jackknife method.

Methods

All methods defined for the FLQuant class are available, but they will operate only on the jackknifed
(.Data) slot. Please use orig() to apply them to the original object stored in the class.

Author(s)

The FLR Team

See Also

FLQuant

Examples

data(ple4)
fjk <- jackknife(stock(ple4))
New object has as many iters as length of jackknifed dimension (defaults to 'year')
dim(fjk)

FLQuantPoint Class FLQuantPoint

Description

The FLQuantPoint class summarizes the contents of an FLQuant object with multiple iterations
along its sixth dimension using a number of descriptive statistics.

Usage

FLQuantPoint(object, ...)

S4 method for signature 'missing'
FLQuantPoint(..., units = "NA", n = 1)

S4 method for signature 'FLQuant'
FLQuantPoint(object, ..., probs = c(0.25, 0.75))

S4 method for signature 'FLQuantPoint'
n(object, ...)

72 FLQuantPoint

Arguments

object Input numeric object

... Additonal arguments

Details

An object of this class has a set structure along its sixth dimension (iter), which will always be of
length 5, and with dimnames mean, median, var, uppq and lowq. They refer, respectively, to the
sample mean, sample median, variance, and lower (0.25) and upper (0.75) quantiles.

Objects of this class wil be typically created from an FLQuant. The various statistics are calculated
along the iter dimension of the original FLQuant using apply.

Slots

.Data The main array holding the computed statistics. array.

units Units of measurement. character.

Accesors

mean,mean<-: ’mean’ element on 6th dimension, arithmetic mean.

median,median<-: ’median’ element on 6th dimension, median.

var,var<-: ’var’ element on 6th dimension, variance.

lowq,lowq<-: ’lowq’ element on 6th dimension, lower quantile (0.25 by default).

uppq,uppq<-: ’uppq’ element on 6th dimension, upper quantile (0.75 by default).

quantile: returns the ’lowq’ or ’uppq’ iter, depending on the value of ’probs’ (0.25 or 0.75).

Constructor

Inputs can be of class:

FLQuant: An FLQuant object with iters (i.e. dim6 > 1)

Validity

iter: iter dimension is of length 5.

Dimnames: iter dimnames are ’mean’, ’median’, ’var’, ’uppq’ and’lowq’

Author(s)

The FLR Team

See Also

FLQuant

FLQuants 73

Examples

flq <- FLQuant(rlnorm(2000), dim=c(10,20,1,1,1,200), units="kg")
flqp <- FLQuantPoint(flq)
flqp <- FLQuantPoint(flq, probs=c(0.05, 0.95))
summary(flqp)
mean(flqp)
var(flqp)
rnorm(200, flqp)

FLQuants Class FLQuants

Description

FLQuants is a list of FLQuant objects. It is very similar to the standard list class. It implements
a lock mechanism that, when turned on, does not allow the user to increase or decrease the object
length. The elements of FLQuants must all be of class FLQuant.

Usage

FLQuants(object, ...)

S4 method for signature 'ANY'
FLQuants(object, ...)

S4 method for signature 'FLComp'
FLQuants(object, ...)

S4 method for signature 'missing'
FLQuants(object, ...)

S4 method for signature 'list'
FLQuants(object, ...)

S4 method for signature 'FLQuants'
FLQuants(object, ...)

Arguments

object unnamed object to be added to the list

... other named or unnamed objects

Slots

.Data The data. list.

names Names of the list elements. character.

desc Description of the object. character.

74 FLS

lock Lock mechanism, if turned on the length of the list can not be modified by adding or removing
elements. logical.

Constructor

A constructor method exists for this class that can take named arguments for any of the list elements.

Author(s)

The FLR Team

See Also

*, Arith, as.data.frame, bubbles, catch<-, iter, model.frame, show, summary, xyplot, FLlst, list

Examples

Compute various FLStock indicators
data(ple4)
fqs <- FLQuants(ssb=ssb(ple4), catch=catch(ple4), rec=rec(ple4),

f=fbar(ple4))
summary(fqs)
xyplot(data~year|qname, fqs, type='b', scales=list(relation='free'))

FLS Class FLS

Description

A virtual class that forms the basis for the FLStock and FLStockLen classes. No objects of this
class can be constructed.

Validity

None No particular validity checks

Slots

catch Total catch weight (FLQuant).

catch.n Catch numbers (FLQuant).

catch.wt Mean catch weights (FLQuant).

desc Description of the stock (character).

discards Total discards weight (FLQuant).

discards.n Discard numbers (FLQuant).

discards.wt Mean discard weights (FLQuant).

landings Total landings weight (FLQuant).

FLSR 75

landings.n Landing numbers (FLQuant).
landings.wt Landing weights (FLQuant).
stock Total stock weight (FLQuant).
stock.n Stock numbers (FLQuant).
stock.wt Mean stock weights (FLQuant).
m Natural mortality (FLQuant).
m.spwn Proportion of natural mortality before spawning (FLQuant).
mat Proportion mature (FLQuant).
harvest Harvest rate or fishing mortality. The units of this slot should be set to ’harvest’ or ’f’

accordingly (FLQuant).
harvest.spwn Proportion of harvest/fishing mortality before spawning (FLQuant).
name Name of the stock (character).
range Named numeric vector containing the quant and year ranges, the plusgroup and the quant

range that the average fishing mortality should be calculated over (numeric).

Author(s)

The FLR Team

See Also

[, [<-, as.data.frame, iter, propagate, qapply, summary, transform, trim, units,FLComp-method,
units<-,FLComp,list-method, window

FLSR Class FLSR

Description

Class for stock-recruitment models.

Usage

FLSR(model, ...)

S4 method for signature 'ANY'
FLSR(model, ...)

S4 method for signature 'missing'
FLSR(model, ...)

Details

A series of commonly-used stock-recruitment models are already available, including the corre-
sponding likelihood functions and calculation of initial values. See SRModels for more details and
the exact formulation implemented for each of them.

76 FLSR

Slots

name Name of the object (character).

desc Description of the object (character).

range Range (numeric).

rec Recruitment series (FLQuant).

ssb Index of reproductive potential, e.g. SSB or egg oor egg production (FLQuant).

fitted Estimated values for rec (FLQuant).

residuals Residuals obtained from the model fit (FLArray).

covar Covariates for SR model (FLQuants).

model Model formula (formula).

gr Function returning the gradient of the likelihood (function).

logl Log-likelihood function (function).

initial Function returning initial parameter values for the optimizer (function).

params Estimated parameter values (FLPar).

logLik Value of the log-likelihood (logLik).

vcov Variance-covariance matrix (array).

details Extra information on the model fit procedure (list).

logerror Is the error on a log scale (logical).

distribution (factor).

hessian Resulting Hessian matrix from the fit (array).

Author(s)

The FLR Team

See Also

FLModel, FLComp

Examples

Create an empty FLSR object.
sr1 <- FLSR()

Create an FLSR object using the existing SR models.
sr2 <- FLSR(model = 'ricker')
sr2@model
sr2@initial
sr2@logl

sr3 <- FLSR(model = 'bevholt')
sr3@model
sr3@initial
sr3@logl

FLSRs 77

Create an FLSR using a function.
mysr1 <- function(){

model <- rec ~ a*ssb^b
return(list(model = model))}

sr4 <- FLSR(model = mysr1)

Create an FLSR using a function and check that it works.
mysr2 <- function(){

formula <- rec ~ a+ssb*b

logl <- function(a, b, sigma, rec, ssb) sum(dnorm(rec,
a + ssb*b, sqrt(sigma), TRUE))

initial <- structure(function(rec, ssb) {
a <- mean(rec)
b <- 1
sigma <- sqrt(var(rec))

return(list(a=a, b=b, sigma=sigma))},
lower = c(0, 1e-04, 1e-04), upper = rep(Inf, 3))

return(list(model = formula, initial = initial, logl = logl))
}

ssb <- FLQuant(runif(10, 10000, 100000))
rec <- 10000 + 2*ssb + rnorm(10,0,1)
sr5 <- FLSR(model = mysr2, ssb = ssb, rec = rec)

sr5.mle <- fmle(sr5)
sr5.nls <- nls(sr5)

NS Herring stock-recruitment dataset
data(nsher)

already fitted with a Ricker SR model
summary(nsher)

plot(nsher)

change model
model(nsher) <- bevholt()

fit through MLE
nsher <- fmle(nsher)

plot(nsher)

78 FLSRs

FLSRs FLSRS is a class that extends list through FLlst but implements a
set of features that give a little bit more structure to list objects. The
elements of FLSRs must all be of class FLSR. It implements a lock
mechanism that, when turned on, does not allow the user to increase
or decrease the object length.

Description

FLSRS is a class that extends list through FLlst but implements a set of features that give a little
bit more structure to list objects. The elements of FLSRs must all be of class FLSR. It implements
a lock mechanism that, when turned on, does not allow the user to increase or decrease the object
length.

Usage

FLSRs(object, ...)

S4 method for signature 'FLSR'
FLSRs(object, ...)

S4 method for signature 'missing'
FLSRs(object, ...)

S4 method for signature 'list'
FLSRs(object, ...)

Slots

.Data The data. list.

names Names of the list elements. character.

desc Description of the object. character.

lock Lock mechanism, if turned on the length of the list can not be modified by adding or removing
elements. logical.

Author(s)

The FLR Team

See Also

FLlst, list, FLSR

Examples

data(nsher)
bnsher <- nsher
model(bnsher) <- bevholt

FLStock 79

bnsher <- fmle(bnsher)
fls <- FLSRs(Ricker=nsher, BevHolt=bnsher)
summary(fls)

FLStock Class FLStock

Description

A class for modelling a fish stock.

Usage

FLStock(object, ...)

S4 method for signature 'FLQuant'
FLStock(object, plusgroup = dims(object)$max, ...)

S4 method for signature 'missing'
FLStock(object, ...)

S4 method for signature 'FLQuants'
FLStock(object, ...)

Arguments

object FLQuant object used for sizing

... Other objects to be assigned by name to the class slots

plusgroup Plusgroup age, to be stored in range

Details

The FLStock object contains a representation of a fish stock as constructed for the purposes of
scientific analysis and advice. This includes information on removals (i.e. catches, landings and
discards), maturity, natural mortality and the results of an analytical assessment (i.e. estimates of
abundance and removal rates) .

Slots

catch Total catch weight (FLQuant).

catch.n Catch numbers (FLQuant).

catch.wt Mean catch weights (FLQuant).

discards Total discards weight (FLQuant).

discards.n Discard numbers (FLQuant).

discards.wt Mean discard weights (FLQuant).

80 FLStock

landings Total landings weight (FLQuant).

landings.n Landing numbers (FLQuant).

landings.wt Landing weights (FLQuant).

stock Total stock weight (FLQuant).

stock.n Stock numbers (FLQuant).

stock.wt Mean stock weights (FLQuant).

m Natural mortality (FLQuant).

mat Proportion mature (FLQuant).

harvest Harvest rate or fishing mortality. The units of this slot should be set to ’hr’ or ’f’ accord-
ingly (FLQuant).

harvest.spwn Proportion of harvest/fishing mortality before spawning (FLQuant).

m.spwn Proportion of natural mortality before spawning (FLQuant).

name Name of the stock (character).

desc Description of the stock (character).

range Named numeric vector containing the quant and year ranges, the plusgroup and the quant
range that the average fishing mortality should be calculated over (numeric).

Accessors

All slots in the class have accessor and replacement methods defined that allow retrieving and
substituting individual slots.

The values passed for replacement need to be of the class of that slot. A numeric vector can also be
used when replacing FLQuant slots, and the vector will be used to substitute the values in the slot,
but not its other attributes.

Constructor

A construction method exists for this class that can take named arguments for any of its slots. All
slots are then created to match the requirements of the class validity. If an unnamed FLQuant object
is provided, this is used for sizing but not stored in any slot.

Author(s)

The FLR Team

See Also

[, [<-, as.FLBiol, as.FLSR, catch, catch<-, catch.n, catch.n<-, catch.wt, catch.wt<-, coerce, com-
puteCatch, computeDiscards, computeLandings, discards, discards<-, discards.n, discards.n<-, dis-
cards.wt, discards.wt<-, harvest, harvest<-, harvest.spwn, landings, landings<-, landings.n, landings.n<-
, landings.wt, landings.wt<-, m, m<-, mat, m.spwn, plot, ssb, ssbpurec, stock, stock.n, stock.wt,
trim, FLComp

FLStockLen 81

Examples

data(ple4)
summary(ple4)

get the landings slot and assign values to it
landings(ple4)
landings(ple4) <- apply(landings.n(ple4)*landings.wt(ple4),2,sum)

perform similar calculation as the preceding apply function
discards(ple4) <- computeDiscards(ple4)
catch(ple4) <- computeCatch(ple4)
catch(ple4) <- computeCatch(ple4, slot="all")

set the units of the harvest slot of an FLStock object
harvest(ple4) <- 'f'

subset and trim the FLStock
ple4[,1]
trim(ple4, age=2:6, year=1980:1990)

Calculate SSB, and SSB per recruit at zero fishing mortality
ssb(ple4)
ssbpurec(ple4)

Coerce an FLStock to an FLBiol
biol <- as(ple4, "FLBiol")

Initialise an FLSR object from an FLStock
flsr <- as.FLSR(ple4)

FLStockLen Class FLStockLen

Description

A class for modelling a length-structured fish stock.

Usage

FLStockLen(object, ...)

S4 method for signature 'FLQuant'
FLStockLen(object, ...)

S4 method for signature 'missing'
FLStockLen(object, ...)

82 FLStockLen

Details

The FLStockLen object contains a length based representation of a fish stock. This includes infor-
mation on removals (i.e. catches, landings and discards), maturity, natural mortality and the results
of an analytical assessment (i.e. estimates of abundance and removal rates).

Slots

halfwidth The middle of the length bins (numeric).

catch Total catch weight (FLQuant).

catch.n Catch numbers (FLQuant).

catch.wt Mean catch weights (FLQuant).

discards Total discards weight (FLQuant).

discards.n Discard numbers (FLQuant).

discards.wt Mean discard weights (FLQuant).

landings Total landings weight (FLQuant).

landings.n Landing numbers (FLQuant).

landings.wt Landing weights (FLQuant).

stock Total stock weight (FLQuant).

stock.n Stock numbers (FLQuant).

stock.wt Mean stock weights (FLQuant).

m Natural mortality (FLQuant).

mat Proportion mature (FLQuant).

harvest Harvest rate or fishing mortality. The units of this slot should be set to ’harvest’ or ’f’
accordingly (FLQuant).

harvest.spwn Proportion of harvest/fishing mortality before spawning (FLQuant).

m.spwn Proportion of natural mortality before spawning (FLQuant).

name Name of the stock (character).

desc Description of the stock (character).

range Named numeric vector containing the quant and year ranges, the plusgroup and the quant
range that the average fishing mortality should be calculated over (numeric).

Author(s)

The FLR Team

See Also

[, [<-, as.FLBiol, as.FLSR, computeCatch, computeDiscards, computeLandings, plot, ssb, ssbpurec,
trim, FLComp

FLStocks 83

Examples

stkl <- FLStockLen(m=FLQuant(0.2, dimnames=list(len=seq(5, 50, by=2), year=2015:2020)))
summary(stkl)
Unnamed FLQuant used for sizing
stkl <- FLStockLen(FLQuant(0.2, dimnames=list(len=seq(5, 50, by=2), year=2015:2020)))
summary(stkl)
m(stkl)

FLStocks Class FLStocks

Description

FLStocks is a class that extends list through FLlst but implements a set of features that give a
little bit more structure to list objects. The elements of FLStocks must all be of class FLStock. It
implements a lock mechanism that, when turned on, does not allow the user to increase or decrease
the object length.

Usage

FLStocks(object, ...)

S4 method for signature 'FLStock'
FLStocks(object, ...)

S4 method for signature 'missing'
FLStocks(object, ...)

S4 method for signature 'list'
FLStocks(object, ...)

Arguments

object unnamed object to be added to the list

... other named or unnamed objects

Slots

.Data The data. list.

names Names of the list elements. character.

desc Description of the object. character.

lock Lock mechanism, if turned on the length of the list can not be modified by adding or removing
elements. logical.

Constructor

A constructor method exists for this class that can take named arguments for any of the list elements.

84 FUNCTION

Author(s)

The FLR Team

See Also

plot, FLlst, list

Examples

data(ple4)
fls <- FLStocks(sa=ple4, sb=window(ple4, end=1980))
summary(fls)

FUNCTION Extract and modify the recruitment time series

Description

Recruitment in number of fish is the first row of the ’stock.n’ slot of an age-structured ’FLStock’.
These convenience functions allow a clearer syntax when retrieving of altering the content of
’stock.nrec.age,’, where ’rec.age’ is usually the first age in the object.

Usage

S4 method for signature 'FLStock'
rec(object, rec.age = as.character(object@range["min"]))

Arguments

object An object of class ’FLStock’

rec.age What age to extract, defaults to first one. As ’character’ to select by name or as
’numeric’ by position.

Value

RETURN Lorem ipsum dolor sit amet

Author(s)

The FLR Team

See Also

FLComp

Funwanted 85

Examples

data(ple4)
rec(ple4)
Multiple recruitment by a factor of 2
rec(ple4) <- rec(ple4) * 2

Funwanted Calculate the discards and landings-associated fishing mortalities

Description

Computes the fishing mortality at age (harvest) associated with either landings (Fwanted) or dis-
cards (Funwanted) through the respective proportions at age. The function names reflect the con-
vention used in ICES.

Usage

Funwanted(x, ages = dimnames(x)$age)

Arguments

x An FLStock object, with harvest

ages Ages over which the respective Fbar calculation applies

Value

An FLQuant

Examples

data(ple4)
Fwanted(ple4, ages=2:6)
Funwanted(ple4, ages=1:3)

fwdWindow Extend a FLR object along the year dimension and set future assumed
values

Description

Objects to be projected into the future are extended until an end year, and the values of certain
quantities, usually assume constant, are set following different mechanisms.

86 fwdWindow

Usage

fwdWindow(x, y, ...)

S4 method for signature 'FLStock,missing'
fwdWindow(
x,
end = dims(x)$maxyear,
nsq = 3,
fun = c("mean", "sample"),
years = list(wt = nsq, mat = nsq, m = nsq, spwn = nsq, discards.ratio = nsq, catch.sel

= nsq)
)

Arguments

x The FLR object to extend.

y A second object from which information is taken.

Details

For ’FLStock’

Value

An object of the same class as ’x’.

Author(s)

The FLR Team.

See Also

window()

Examples

data(ple4)
Use mean of last three years and extend until 2020
fut <- fwdWindow(ple4, end=2020)
Check values on catch.wt
catch.wt(fut)[, ac(2015:2020)]
Use mean of the 2010:2015 period
fut <- fwdWindow(ple4, end=2020, years=2010:2015)
Use last three years mean, but last five for 'wt'
fut <- fwdWindow(ple4, end=2020, nsq=3, years=list(wt=5))
stock.wt(fut)[, ac(2013:2020)]
catch.sel(fut)[, ac(2013:2020)]
Resample from last years for 'wt'
fut <- fwdWindow(ple4, end=2020, nsq=3, fun=c(wt='sample'))
Years to resample can be different for 'catch.sel'

getSlotNamesClass 87

fut <- fwdWindow(ple4, end=2020, nsq=3,
fun=c(wt='sample', catch.sel='sample'), years=c(wt=10, catch.sel=5))

'wt' slot has been resampled,
stock.wt(fut)[, ac(2015:2020)]
while others have used a 3 year average
catch.sel(fut)[, ac(2015:2020)]

getSlotNamesClass Names of slots of a given class

Description

This function returns the names, as a character vector, of the slots in an S4 object that are of the class
specified by the ’class’ argument. Comparison is done using is(), so class inheritance is matched.

Usage

getSlotNamesClass(object, class)

Arguments

object An S4 object to check slots from.

class The name of the class to match, ’character’.

Author(s)

The FLR Team

Examples

data(ple4)
getSlotNamesClass(ple4, 'FLQuant')

group Group objects over some index by applying a function over a single
dimension

Description

Array objects (e.g. FLQuant or FLQuants) are divided along a single dimnension following a given
index or expression, an aggregating function is applied to each subset, and the results are joined
again. Data can be added, for example, by decade or for two age groups.

88 iav

Usage

group(x, FUN, ...)

S4 method for signature 'FLQuant,function'
group(x, FUN = sum, ...)

Arguments

x An object to group.

FUN A function to apply along the chosen dimension, defaults to ’sum’.

... An expression or indexing vector, named as the chosen dimension. Extra argu-
ments to FUN can also be provided, but cannmot match names in x.

Value

A single object with reduced dimensionality.

Author(s)

Iago Mosqueira (WMR)

Examples

data(ple4)
Add catch-at-age along two age groups, 'juv'eniles and 'adu'lts
group(catch.n(ple4), sum, age=c('juv', 'juv', rep('adu', 8)))
An expression can use based on dimnames
group(catch.n(ple4), sum, age=age < 3)
Mean by lustrum, by using 'year - year %% 5'
group(catch.n(ple4), mean, year = year - year %% 5)

iav Compute the inter-annual variability of a time series

Description

The inter-annual variability of a time series stored in an FLQuant object, is computed as |xy −
xy−1)/xy−1|. The resulting object will be one year shorter than the input. The first year will be
missing as values are assigned to the final year of each pair.

Usage

iav(object)

Value

An object of the same class as object.

indicators.len 89

Author(s)

The FLR Team

Examples

data(ple4)
Compute inter-annual variability in catch
iav(catch(ple4))

indicators.len Calculate quantile(s) of length distribution

Description

z = (k * (linf - lmean)) / (lmean - lc) lmean = sum(naa * len) / sum(naa) lc, length at first capture

Usage

indicators.len(
object,
indicators = "lbar",
model = vonbert,
params,
cv = 0.1,
lmax = 1.25,
bin = 1,
n = 500,
metric = catch.n,
...

)

lenquantile(x, quantile = 0.5)

lmax5(x)

l95(x)

l25(x)

lc50(x)

lmode(x)

lbar(x)

lmean(x)

90 indicators.len

lmaxy(x, lenwt)

pmega(x, linf, lopt = linf * 2/3)

bheqz(x, linf, k, t0, lc = lc50(x))

References

• Kell, L.T., Minto, C., Gerritsen, H.D. 2022. Evaluation of the skill of length-based indicators
to identify stock status and trends. ICES Journal of Marine Science. doiu: 10.1093/icesjms/fsac043.

• ICES. 2015. Report of the Fifth Workshop on the Development of Quantitative Assessment
Methodologies based on Life-history Traits, Exploitation Characteristics and other Relevant
Parameters for Data-limited Stocks (WKLIFE V), 5–9 October 2015, Lisbon, Portugal. ICES
CM 2015/ACOM:56. 157 pp.

• ICES. 2020. Tenth Workshop on the Development of Quantitative Assessment Methodologies
based on LIFE-history traits, exploitation characteristics, and other relevant parameters for
data-limited stocks (WKLIFE X). ICES Scientific Reports. 2:98. 72 pp. http://doi.org/10.17895/ices.pub.5985

Examples

data(ple4)
indicators.len(ple4, indicators=c('lbar', 'lmaxy'),

params=FLPar(linf=132, k=0.080, t0=-0.35), metric='catch.n',
lenwt=FLPar(a=0.01030, b=2.975))

indicators.len(ple4, indicators=c('pmega'),
params=FLPar(linf=60, k=2.29e-01, t0=-1.37), metric='catch.n')

data(ple4.index)
indicators.len(ple4.index, indicators=c('lbar', 'lmean'),

params=FLPar(linf=132, k=0.080, t0=-0.35), metric='index')
#
ialk <- invALK(params=FLPar(linf = 60, k = 2.29e-01, t0 = -1.37e+00),

model=vonbert, age=1:10, lmax=1.2)
samps <- lenSamples(catch.n(ple4), invALK=ialk, n=250)
lenquantile(samps, 0.50)
lmax5(samps)
l95(samps)
l25(samps)
lc50(samps)
lmode(samps)
lbar(samps)
lmean(samps)
Linf(ple4) = 60
lmean(samps) / (0.75 * lc50(samps) + 0.25 * 60) #
lenwt <- FLPar(a=0.01030, b=2.975)
lmaxy(samps, lenwt)
pmega(samps, linf=60)
linf <- 60
k <- 2.29e-01
t0 <- -1.37e+00
bheqz(samps, linf = 60, k = 2.29e-01, t0 = -1.37e+00)

intersect 91

intersect Returns FLR objects trimmed to their shared dimensions.

Description

Objects sharing certain dimensions, as inferred by their dimnames, are subset to the common ones
along all dimensions. The returned object is of one of the FLlst classes, as corresponds to the input
class. The objects in the list can then be, for example, combined or directly compared, as shown in
the examples.

Usage

S4 method for signature 'FLArray,FLArray'
intersect(x, y)

Arguments

x First object to be compared and subset

y Second object to be compared and subset

Value

And object of the corresponding FLsdt-based plural class.

Author(s)

The FLR Team

See Also

base::intercept

Examples

big <- FLQuant(64.39, dimnames=list(age=1:4, year=2001:2012))
small <- FLQuant(3.52, dimnames=list(age=2:3, year=2001:2005))
intersect(big, small)

Two FLQuant objects can be added along their common dimension using Reduce()
Reduce('+', intersect(big, small))

92 iter

iter Methods iter

Description

Select or modify iterations of an FLR object

Usage

iter(obj, ...)

S4 method for signature 'FLArray'
iter(obj, iter)

Details

To extract or modify a subset of the iterations contained in an FLR object, the iter and iter<-
methods can be used.

In complex objects with various FLQuant slots, the iter method checks whether individual slots
contain more than one iteration, i.e. dims(object)[6] > 1. If a particular slot contains a single
iteration, that is returned, otherwise the chosen iteration is selected. This is in contrast with the
subset operator [, which does not carry out this check.

For objects of class FLModel, iters are extracted for slots of classes FLQuant, FLCohort and FLPar.

Generic function

iter(object) iter<-(object,value)

Author(s)

The FLR Team

See Also

FLComp, FLQuant

Examples

For an FLQuant
flq <- FLQuant(rnorm(800), dim=c(4,10,2), iter=10)
iter(flq, 2)

For the more complex FLStock object
data(ple4)
fls <- propagate(ple4, 10)
Extraction using iter...
fls2 <- iter(fls, 2)
summary(fls2)

jackknife 93

jackknife Method jackknife

Description

Jackknife resampling

Usage

S4 method for signature 'FLQuant'
jackknife(object, dim = "year", na.rm = TRUE)

S4 method for signature 'FLQuants'
jackknife(object, ...)

S4 method for signature 'FLModel'
jackknife(object, slot)

Details

The jackknife method sets up objects ready for jackknifing, i.e. to systematically recompute a
given statistic leaving out one observation at a time. From this new set of "observations" for the
statistic, estimates for the bias and variance of the statstic can be calculated.

Input objects cannot have length > 1 along the iter dimension, and the main slot in the resulting
object will have as many iters as the number of elements in the original object that are not NA.

Generic function

jackknife(object, ...)

Author(s)

The FLR Team

See Also

FLQuantJK FLParJK

Examples

flq <- FLQuant(1:8)
flj <- jackknife(flq)
iters(flj)

94 join

join Joins objects along a dimensions where dimnames differ

Description

FLQuant objects are joined along a single dimension, on which dimnames are different. This is the
reverse operation to divide.

Usage

join(x, y, ...)

S4 method for signature 'FLQuant,FLQuant'
join(x, y)

S4 method for signature 'FLQuants,missing'
join(x, y)

Arguments

x An object to join

y An object to join

Value

A single object

Author(s)

Iago Mosqueira (WMR)

Examples

data(ple4)
JOIN over age dimension
x <- catch.n(ple4)[1,]
y <- catch.n(ple4)[2,]
join(x, y)
JOIN over year dimension
x <- catch.n(ple4)[,10:20]
y <- catch.n(ple4)[,21:25]
join(x, y)
div <- divide(catch.n(ple4), dim=1)
is(div)
length(div)
join(div)
all.equal(join(divide(catch.n(ple4), dim=1)), catch.n(ple4))

lattice 95

lattice Lattice methods

Description

Implementation of Trellis graphics in FLR

Usage

S4 method for signature 'formula,FLQuant'
xyplot(x, data, ...)

S4 method for signature 'formula,FLCohort'
xyplot(x, data, ...)

S4 method for signature 'formula,FLQuants'
xyplot(x, data, ...)

S4 method for signature 'formula,FLComp'
xyplot(x, data, ...)

S4 method for signature 'formula,FLQuant'
bwplot(x, data, ...)

S4 method for signature 'formula,FLComp'
bwplot(x, data, ...)

S4 method for signature 'formula,FLQuant'
dotplot(x, data, ...)

S4 method for signature 'formula,FLComp'
dotplot(x, data, ...)

S4 method for signature 'formula,FLQuant'
barchart(x, data, ...)

S4 method for signature 'formula,FLComp'
barchart(x, data, ...)

S4 method for signature 'formula,FLQuant'
stripplot(x, data, ...)

S4 method for signature 'formula,FLComp'
stripplot(x, data, ...)

S4 method for signature 'formula,FLQuant'
histogram(x, data, ...)

96 lattice

S4 method for signature 'formula,FLComp'
histogram(x, data, ...)

S4 method for signature 'formula,FLQuants'
histogram(x, data, ...)

S4 method for signature 'formula,FLPar'
densityplot(x, data, ...)

Details

Plot methods in the lattice package are available for an object of classes FLQuant, FLQuants or
those derived from FLComp.

See the help page in lattice for a full description of each plot method and all possible arguments.

Plot methods from lattice are called by passing a data.frame obtained by converting the FLR objects
using as.data.frame. For details on this transformation, see as.data.frame-FLCore.

Generic function

barchart(x, data, ...)

bwplot(x, data, ...)

densityplot(x, data, ...)

dotplot(x, data, ...)

histogram(x, data, ...)

stripplot(x, data, ...)

xyplot(x, data, ...)

Author(s)

The FLR Team

See Also

xyplot, barchart, bwplot, densityplot, dotplot, histogram, stripplot

Examples

data(ple4)
xyplot on FLQuant

xyplot(data~year|age, catch.n(ple4)[, 1:20])
xyplot(data~year|as.factor(age), catch.n(ple4)[, 1:20], type='b', pch=19,
cex=0.5)

bwplot on FLQuant with iter...
flq <- rnorm(100, catch.n(ple4)[, 1:20], catch.n(ple4)[,1:20])
bwplot(data~year|as.factor(age), flq)

...now with same style modifications

mase 97

bwplot(data~year|as.factor(age), flq, scales=list(relation='free',
x=list(at=seq(1, 20, by=5),
labels=dimnames(catch.n(ple4)[,1:20])$year[seq(1, 20, by=5)])),
cex=0.5, strip=strip.custom(strip.names=TRUE, strip.levels=TRUE,
var.name='age'))

mase Compute mean absolute scaled error (MASE)

Description

Franses, PH. "A note on the Mean Absolute Scaled Error". International Journal of Forecasting. 32
(1): 20–22. doi:10.1016/j.ijforecast.2015.03.008.

Usage

mase(ref, preds, ...)

S4 method for signature 'FLQuant,FLQuants'
mase(ref, preds, order = c("inverse", "ahead"))

S4 method for signature 'FLIndices,list'
mase(ref, preds, order = "inverse", wt = "missing")

Arguments

ref Reference or naive prediction.

preds Predicitions to compare to reference.

... Extra arguments.

order Are predictions in ’inverse’ (default) or ’ahead’ order.

wt Mean weights-at-age to use with indices.

Value

A numeric vector of the same length as ’preds’.

98 meanage

mbar Computes the mean natural mortality acros the fully selected ages

Description

Equivalent to the mean fishing mortality metric returned by ’fbar’, ’mbar’ calculates the mean
natural mortality across the ages inside the range defined by ’minfbar’ and ’maxfbar’.

Usage

mbar(object, ...)

Arguments

object An object of class ’FLStock’.

Value

An object of class ’FLQuant’.

Author(s)

The FLR Team, proposal by H. Winker.

See Also

fbar

Examples

data(ple4)
mbar(ple4)

meanage Calculate the mean age in the stock and catch

Description

Average age in the stock numbers or catch-at-age.

Usage

meanage(object)

meanageCatch(object)

meanwt 99

Arguments

object An age-structured FLStock object

Value

An FLQuant object

Author(s)

The FLR Team

See Also

FLComp

Examples

data(ple4)
meanage(ple4)
meanageCatch(ple4)

meanwt Calculate the mean weight in stock and catch

Description

Average weight in the stock numbers or catch-at-age.

Usage

meanwt(object)

meanwtCatch(object)

Arguments

object An age-structured FLStock object

Value

An FLQuant object

Author(s)

The FLR Team

See Also

FLComp

100 metrics

Examples

data(ple4)
meanwt(ple4)
meanwtCatch(ple4)

metrics Extract simply-defined metrics from compex objects

Description

Time series summaries of complex objects are commonly needed, for example for plotting the
inputs and outputs of a class like FLStock. These methods allow for simple specification of those
metrics by means of function calls and formulas.

Usage

metrics(object, metrics, ...)

S4 method for signature 'FLComp,list'
metrics(object, metrics, ...)

S4 method for signature 'FLS,missing'
metrics(object, metrics, ...)

Arguments

object A complex FLR object from which to extract time series metrics.

Value

An object, generally of class FLQuants.

Author(s)

The FLR Team

See Also

FLComp

Examples

data(ple4)
missing
metrics(ple4)
metrics = function
metrics(ple4, metrics=function(x) FLQuants(SSB=ssb(x), REC=rec(x),

F=fbar(x), SSBREC=ssb(x) / rec(x)))

mohnMatrix 101

metrics = formula
metrics(ple4, metrics=~ssb)
metrics(ple4, metrics=list(SSB=~ssb))
metrics(ple4, metrics=list(SBMSY=~ssb/SBMSY), FLPar(SBMSY=3.87e4))
metrics = list
metrics(ple4, metrics=list(SSB=ssb, REC=rec, F=fbar))
metrics(ple4, metrics=list(SSB=~ssb, REC=rec, F=fbar))

mohnMatrix Generate a matrix to compute Mohn’s rho for a single metric

Description

A common measure of the strength of stock assessment retrospective patterns is Mohn’s rho. This
function does not carry out the calculation but returns a matrix with the metrics value for the n
restrospective runs, in columns, and n + 2 years, in rows.

Usage

mohnMatrix(stocks, metric = "fbar", ...)

Arguments

stocks An FLStocks object from a restrospective analysis
metric Metric to be computed, as a character vector or function

Value

A metrics of n + 2 x n, where n is the numbers of objects in stocks.

msy msy: A series of methods to extract or compute MSY-based reference
points

Description

Reference points based on equilibirum calculations of Maximum Sustainable Yield (MSY) are com-
puted by various FLR packages. The methods’ generics are defined here for convenience. Please
refer to the help pages of particular methods for further details

Usage

msy(x, ...)

bmsy(x, ...)

sbmsy(x, ...)

fmsy(x, ...)

102 names

Arguments

x An input object from which to extract or compute a reference point

Details

The four methods provide the following parameter estimates:

• msy Maximum Sustainable Yield (MSY)

• fmsy Fishing mortality level expected to produce on average MSY

• bmsy Total biomass that should produce MSY

• sbmsy Spawning biomass that should produce MSY

Value

A value for the requested reference point, ’FLPar’

Author(s)

The FLR Team

See Also

FLPar

names Method names

Description

The names method returns the names of the dimnames of an object. For some classes, the names
attribute can be modified directly using names<-.

Usage

S4 method for signature 'FLArray'
names(x)

S4 method for signature 'FLPar'
names(x)

S4 replacement method for signature 'FLPar,character'
names(x) <- value

Generic function

names(x) names<-(x, value)

plot 103

Author(s)

The FLR Team

See Also

names

Examples

FLQuant
data(ple4)
names(catch.n(ple4))

Contrast this with
dimnames(catch.n(ple4))

plot Method plot

Description

Standard plot methods for every FLCore class. FLR plot methods are based on lattice, and
attempt to show a general view of the object contents.

Usage

S4 method for signature 'FLQuant,missing'
plot(
x,
xlab = "year",
ylab = paste("data (", units(x), ")", sep = ""),
type = "p",
...

)

S4 method for signature 'FLStock,missing'
plot(x, auto.key = TRUE, ...)

S4 method for signature 'FLBiol,missing'
plot(x, y, ...)

S4 method for signature 'FLIndex,missing'
plot(x, type = c("splom"), ...)

S4 method for signature 'FLSR,missing'
plot(x, main = "Functional form", log.resid = FALSE, cex = 0.8)

104 plot

S4 method for signature 'FLPar,missing'
plot(x, y = "missing", ...)

Details

Users are encouraged to write their own plotting code and make use of the overloaded lattice
methods, for example xyplot or bwplot. See also lattice-FLCore.

Generic function

plot(x,y)

Author(s)

The FLR Team

See Also

plot

Examples

data(ple4)

FLQuant
plot(catch.n(ple4)[, 1:20])
plot(catch.n(ple4)[, 1:20], type='b', pch=19, cex=0.5)

FLStock
data(ple4sex)
plot(ple4)
plot(ple4sex)

FLBiol
data(ple4.biol)
plot(ple4.biol)

FLIndex
data(ple4.index)
plot(ple4.index)

FLSR
data(nsher)
plot(nsher)

FLPar
fpa <- FLPar(a=rnorm(100, 1, 20), b=rlnorm(100, 0.5, 0.2))
plot(fpa)

predictModel 105

predictModel A class for model prediction

Description

Object of the predictModel class are used in various FLR classes to allow flexible modelling of the
dynamics of different biological and technological processes.

Usage

S4 method for signature 'FLQuants,formula'
predictModel(object, model, params = FLPar())

S4 method for signature 'FLQuants,missing'
predictModel(object, params = FLPar())

S4 method for signature 'FLQuants,character'
predictModel(object, model, params = FLPar())

S4 method for signature 'FLQuants,function'
predictModel(object, model, params = FLPar())

S4 method for signature 'FLQuants,list'
predictModel(object, model, params = FLPar())

S4 method for signature 'missing,ANY'
predictModel(object, model, ...)

Details

The dependency of life history processes, such as maturity and fecundity, to biological and envi-
ronmental factors, can be represented in objects of this class via a simple model (represented by a
formula) and the corresponding paramaters (FLPar) and inputs (FLQuants).

Slots

.Data Inputs to the model not found in enclosing class (FLQuants).

model Model representation (formula).

params Model paramaters (FLPar).

Validity

VALIDITY Neque porro quisquam est qui dolorem ipsum.

You can inspect the class validity function by using getValidity(getClassDef('predictModel'))

106 production

Accessors

All slots in the class have accessor and replacement methods defined that allow retrieving and
substituting individual slots.

The values passed for replacement need to be of the class of that slot. A numeric vector can also be
used when replacing FLQuant slots, and the vector will be used to substitute the values in the slot,
but not its other attributes.

Constructor

A construction method exists for this class that can take named arguments for any of its slots. All
slots are then created to match the requirements of the class validity.

Methods

Methods exist for various calculations based on values stored in the class:

METHOD Neque porro quisquam est qui dolorem ipsum.

Author(s)

The FLR Team

See Also

FLQuants FLPar FLBiol

Examples

fec <- FLQuants(fec=FLQuant(rlnorm(10, 20, 5),
dimnames=list(year=2000:2009), units='1'))

predictModel(fec, model=~fec)
predictModel(fec)
predictModel(fec, model="bevholt")
predictModel(fec, model=bevholt)
predictModel(fec, model=bevholt())
predictModel(model=rec~a*ssb, params=FLPar(a=1.234))
predictModel(model=bevholt, params=FLPar(a=1.234))
predictModel(model="bevholtss3", params=FLPar(a=1.234))

production Returns the computed yearly production

Description

Returns the computed yearly production

propagate 107

Usage

production(object, ...)

S4 method for signature 'FLStock'
production(object, what = "ssb", ...)

Arguments

object An object with biomass and catch data.

what One of the production options: "ssb", "biomass", or "exploitation".

Details

Production can be calculated for an FLStock based on the spawning stock biomass ("ssb"), total
biomass ("biomass"), or exploitation ("exploitation").

Value

The production by year, of class FLQuant.

Author(s)

Laurie Kell (Sea++), Iago Mosqueira (WMR)

Examples

data(ple4)
For SSB
production(ple4, "ssb")
For total biomass
production(ple4, "biomass")

propagate Method propagate

Description

Methods to extend objects of various FLR classes along the iter (6th FLQuant) dimension. Objects
must generally have a single iter to be extended. The new iterations can be filled with copies of
the existing, or remain as NA.

Usage

propagate(object, ...)

S4 method for signature 'FLQuant'
propagate(object, iter, fill.iter = TRUE)

108 properties

Arguments

object Object to be propagated.

fill.iter Should first array be copied to others? Defaults to FALSE.

iters No. of iterations in output.

Generic function

propagate(object, ...)

Author(s)

The FLR Team

See Also

FLQuant

Examples

An FLQuant with one iter (dim(flq)[6] == 1)
flq <- FLQuant(rnorm(80), dim=c(4,20), quant='age')

can now be extended along the `iter` dimension, with
#' copies of the first
propagate(flq, 100)

or without
iter(propagate(flq, 100, fill.iter=FALSE), 2)

properties Returns a series of properties of the fisheries element represented by
the class.

Description

Returns a series of properties of the fisheries element represented by the class.

Usage

properties(object, ...)

Arguments

object An object from which properties can be extracted.

Value

The correspodning properties, an FLPar.

quant 109

Author(s)

Laurie Kell (Sea++), Iago Mosqueira (WMR)

quant Method quant

Description

Function to get or set the name of the first dimension (quant) in an object of any FLArray-based
class, like FLQuant or FLCohort.

Usage

quant(object, ...)

S4 method for signature 'FLArray'
quant(object)

S4 replacement method for signature 'FLArray,character'
quant(object) <- value

Generic function

quant(object) quant<-(object,value)

Author(s)

The FLR Team

See Also

FLQuant, FLCohort

Examples

quant is 'quant' by default
quant(FLQuant())

flq <- FLQuant(rnorm(80), dim=c(4,20), quant='age')
quant(flq)
quant(flq) <- 'length'
summary(flq)

quant is 'quant' by default
quant(FLQuant())

flq <- FLQuant(rnorm(80), dim=c(4,20), quant='age')

110 quantTotals

quant(flq)
quant(flq) <- 'length'
summary(flq)

quantTotals Methods quantTotals

Description

Methods to compute totals over selected dimensions of FLQuant objects These methods return an
object of same dimensions as the input but with the sums along the first (yearTotals) or second
dimension (quantTotals). Although the names might appear contradictory, it must be noted that
what each method really returns are the totals over the selected dimension.

Usage

quantTotals(x, ...)

Generic function

quantTotals(x)

yearTotals(x)

Author(s)

The FLR Team

See Also

FLQuant

Examples

flq <- FLQuant(rlnorm(100), dim=c(10,10))
quantTotals(flq)
See how the values obtained by yearSums are being replicated

yearSums(flq)
Get the proportions by quant

flq / quantTotals(flq)
or year

flq / yearTotals(flq)

readVPAIntercatch 111

readVPAIntercatch Reads a single file with one year of data in VPA format as output by
ICES Intercatch

Description

Reads a single file with one year of data in VPA format as output by ICES Intercatch

Usage

readVPAIntercatch(file)

Arguments

file Intercatch VPA file to load

Value

An object of class FLQuant.

residuals-FLQuant residuals

Description

residuals

Usage

S4 method for signature 'FLQuant'
residuals(object, fit, type = "log", ...)

Examples

data(ple4)
fit <- rlnorm(1, log(catch(ple4)), 0.1)
residuals(catch(ple4), fit)
residuals(catch(ple4), fit, type="student")
rraw(catch(ple4), fit)
rlogstandard(catch(ple4), fit)
rstandard(catch(ple4), fit)
rstudent(catch(ple4), fit)

112 rnoise,numeric,FLQuant-method

rnoise,numeric,FLQuant-method

Random noise with different frequencies

Description

A noise generator

Usage

S4 method for signature 'numeric,FLQuant'
rnoise(
n = n,
len = len,
sd = 1,
b = 0,
burn = 0,
trunc = 0,
what = c("year", "cohort", "age"),
seed = NA

)

S4 method for signature 'numeric,missing'
rnoise(n = n, sd = 1, b = 0, burn = 0, trunc = 0, seed = NA)

S4 method for signature 'numeric,FLQuant'
rlnoise(
n = n,
len = len,
sd = 1,
b = 0,
burn = 0,
trunc = 0,
what = c("year", "cohort", "age"),
seed = NA

)

Arguments

n number of iterations

len an FLQuant

sd standard error for simulated series

b autocorrelation parameter a real number in 0,1

burn gets rid of 1st values i series

trunc get rid of values > abs(trunc)

rnoise,numeric,FLQuant-method 113

what returns time series for year, cohort or age"

... any

Value

A FLQuant with autocorrelation equal to B.

References

Ranta and Kaitala 2001 Proc. R. Soc. vt = b * vt-1 + s * sqrt(1 - b^2) s is a normally distributed
random variable with mean = 0 b is the autocorrelation parameter

Examples

Not run:
flq <- FLQuant(1:100, quant="age")
white <- rnoise(100,flq,sd=.3,b=0)
plot(white)
acf(white)

red <- rnoise(100,flq,sd=.3,b=0.7)
plot(red)
acf(red)

res <- rnoise(100,flq,sd=.3,b=0)

ggplot() +
geom_point(aes(year,age,size=data),

data=subset(as.data.frame(res), data>0)) +
geom_point(aes(year,age,size=-data),

data=subset(as.data.frame(res),data<=0),colour="red")+
scale_size_area(max_size=4, guide="none")+
facet_wrap(~iter)

data(ple4)
res <- rnoise(4,m(ple4),burn=10,b=0.9,what="cohort")
ggplot()+
geom_point(aes(year,age,size= data),

data=subset(as.data.frame(res),data>0))+
geom_point(aes(year,age,size=-data),

data=subset(as.data.frame(res),data<=0),colour="red")+
scale_size_area(max_size=4, guide="none")+
facet_wrap(~iter)

End(Not run)

114 ruleset

roc Receiver Operating Characteristic (ROC)

Description

A receiver operating characteristic (ROC) curve shows the ability of a binary classifier. Here it is
applied to compare two sets of values, stored as two FLQuant objects. The first is the result of
aplying a logical comparison of a given state against a reference value, so it contains a binary (0,
1) label. The second, the score, contains an alternative metric that attempts to measure the absolute
value of the first. The examples below compare an observation of stock status, SSB being less than
a reference point, and an alternative metric, here the catch curve estimates of total mortality.

Usage

roc(label, ind, direction = c(">=", "<="))

auc(x = NULL, TPR = x$TPR, FPR = x$FPR)

Examples

data(ple4)
OM 'reality' on stock status (fbar)
state <- fbar(ple4)[, ac(1960:2017)]
Model estimates of F using catch curves
ind <- acc(catch.n(ple4)[, ac(1960:2017)])
Compute TSS, returns data.frame
roc(state >= 0.22, ind)
Needs ggplotFL
Not run:
ggplot(roc(state >= 0.22, ind, direction='>='), aes(x=FPR, y=TPR)) +

geom_line() +
geom_abline(slope=1, intercept=0, colour="red", linetype=2)

End(Not run)
Computes auc using the output of roc()
with(roc(state >= 0.22, ind), auc(TPR=TPR, FPR=FPR))
auc(roc(state >= 0.22, ind))

ruleset Set of verify rules for an FLR class

Description

Returns a set of standard rules to be used by the verify method for an object of a given class.

runstest 115

Usage

ruleset(object, ...)

S4 method for signature 'FLStock'
ruleset(object, ...)

Arguments

object An object of any FLR class for which the method has been defined.

... Names of positions in the standard list to subset.

Details

A standard minimal set of rules to check FLStock objects against using the verify method. The
included rules are (with names in italics) check that:

• there are no NAs in any slot, anyna.

• catch.wt, landings.wt, discards.wt and stock.wt > 0.

• mat, m.spwn and harvest.spwn values are between 0 and 1.

• harvest >= 0.

• cohorts in the stock.n slot contain decreasing numbers, except for the plusgroup age.

Value

A named list containing the rules defined for for the class object belongs to.

Author(s)

The FLR Team

Examples

data(ple4)
ruleset(ple4)
Extract single rule by name
ruleset(ple4, 'anyna')

runstest Computes Runs Test p-values

Description

Computes Runs Test p-values

116 runstest

Usage

runstest(fit, obs, ...)

S4 method for signature 'FLQuants,missing'
runstest(fit, combine = TRUE)

S4 method for signature 'FLQuants,FLQuants'
runstest(fit, obs, combine = TRUE)

S4 method for signature 'FLQuant,FLQuant'
runstest(fit, obs, combine = TRUE)

S4 method for signature 'FLQuant,missing'
runstest(fit, combine = TRUE)

S4 method for signature 'numeric,numeric'
runstest(fit, obs, combine = TRUE)

S4 method for signature 'numeric,missing'
runstest(fit, obs, combine = TRUE)

Arguments

fit The result of a model fit.

obs The observations used in the fit.

... Extra arguments.

combine Should ages be combined by addition, defaults to TRUE.

Value

A list with elements ’p.values’ and ’pass’.

Examples

data(nsher)
Compute 'runstest' for FLSR fit
runstest(fit=fitted(nsher), obs=rec(nsher))
Example runstest by age
data(ple4)
runstest(catch.n(ple4), landings.n(ple4), combine=FALSE)
runstest(fit=FLQuants(D=residuals(catch(ple4), discards(ple4)),

L=residuals(catch(ple4), landings(ple4))))
runstest(fit=residuals(fitted(nsher), rec(nsher)))
runstest(FLQuants(residuals(fitted(nsher), rec(nsher))))
Returns value per iter
runstest(fit=rnorm(25, residuals(fitted(nsher), rec(nsher)), 0.2))
runstest(ssb(nsher))
runstest(rnorm(1, FLQuant(1, dimnames=list(year=1973:2021))))
runstest(rep(0.1, 10), cumsum(rnorm(10, 0.1, 0.01)))

rwalk 117

runstest(rnorm(10, 0, 0.1))

rwalk Generate a random walk time series from a starting point

Description

The last year of an FLQuant object is used as atrating point to generate a time series following a
random walk with drift:

zt = zt−1 + ϵt + δt, t = 1, 2, ...

where ϵ is N (0, σ)

Usage

rwalk(x0, end = 1, sd = 0.05, delta = 0)

Arguments

x0 The initial state of the random walk, ’FLQuant’.

end The number of years or the final year of the series. numeric.

sd The standard deviation of the random walk, numeric.

delta The drift of the random walk.

Details

The length of the series is set by argument end. This is taken as a number of years, if its value is
smaller than the final ’year’ of ’x0’, or as a final year if larger or of class ’character’.

Value

An ’FLQuant’ object.

Author(s)

Iago Mosqueira, WMR (2023)

See Also

FLQuant rnorm

118 show

Examples

data(ple4)
Generate random walk recruitmrnt with positive drift
rwalk(rec(ple4), end=5, sd=0.08, delta=0.05)
Use append() to add the new values at the end
append(rec(ple4), rwalk(rec(ple4), end=10, sd=0.04, delta=0))
Use end as number of years
rwalk(rec(ple4), end=5)
or as final year
rwalk(rec(ple4), end=2020)

show Method show

Description

Standard display of an object contents in an interactive session. Objects of class FLQuant with
length > 1 along the sixth dimension (iter) are output in a summarised form, as median(mad),
where mad is the median absolute deviation. See mad.

Usage

S4 method for signature 'FLArray'
show(object)

Details

The same format is used for objects of class FLPar with length > 1 on the last dimension (iter).

Generic function

show(object)

Author(s)

The FLR Team

See Also

FLComp

Examples

no 'iter'
flq <- FLQuant(rnorm(80), dim=c(4,20), quant='age', units='kg')
flq

with 'iter'
flq <- FLQuant(rnorm(800), dim=c(4,20,1,1,1,10), quant='age', units='kg')

simplify 119

flq

simplify Aggregate or select along unwanted dimensions

Description

Objects of many FLR classes might be aggregated along the "unit", "season", and/or "area" dimen-
sions according to the type of data they contain.

Usage

simplify(object, ...)

S4 method for signature 'FLStock'
simplify(
object,
dims = c("unit", "season", "area")[dim(object)[3:5] > 1],
spwn.season = 1,
rec.season = spwn.season,
harvest = TRUE,
weighted = FALSE

)

Arguments

object A complex FLR object to aggregate.

Value

An object of the same class as the input.

Author(s)

The FLR Team

120 slim

slim Drop unnecesary ’iters’

Description

Objects of FLR classes can vary in the length along the sixth dimension in any slot of class FLQuant.
This reduces object size and memory usage. If an object has been extended fully, for example by
using propagate, we can slim down the object by reducing any slot where all iters are identical and
keeping only yhe first iter.

Usage

slim(object, ...)

S4 method for signature 'FLComp'
slim(object, ...)

Arguments

object A complex FLR object to slim down.

Details

The test for whether an slot can be slimmed is based on checking if the sum of the variance along
the 6th dimensions is equal to zero.

Value

An object of the same class as the input.

Author(s)

The FLR Team

See Also

FLQuant propagate

Examples

data(ple4)
Extend all of ple4 to 50 iters
ple4 <- propagate(ple4, 50)
Add variability in catch.n
catch.n(ple4) <- rlnoise(50, log(catch.n(ple4)), log(catch.n(ple4))/10)
summary(ple4)
slim object by dropping identical iters
sple4 <- slim(ple4)
summary(sple4)

split-methods 121

split-methods splits x along the iter dimension into the groups defined by f.

Description

Similar to base::split, but working along the 6th, iter, dimension of any singular FLR object. The
object is divided into as many objects as unique values in f, and returned as an FLlst-derived object,
e.g. an FLQuants object when applied to an FLQuant.

Usage

S4 method for signature 'FLQuant,vector'
split(x, f)

S4 method for signature 'FLComp,vector'
split(x, f)

Arguments

x The object to be split.

f The vector of group names.

Value

An object of the corresponding plural class (FLQuants from FLQuant).

Author(s)

Iago Mosqueira (WMR).

Examples

FROM FLQuant to FLQuants
flq <- rlnorm(20, FLQuant(seq(0.1, 0.8, length=10)), 0.2)
split(flq, c(rep(1, 5), rep(2,15)))

splom Method splom

Description

Draws a conditional scatter plot matrix.

Usage

S4 method for signature 'FLPar,missing'
splom(x, data, ...)

122 spread

Details

See the help page in lattice for a full description of each plot and all possible arguments.

Generic function

splom(x,data)

Author(s)

The FLR Team

See Also

splom

Examples

flp <- FLPar(c(t(mvrnorm(500, mu=c(0, 120, 0.01, 20),
Sigma=matrix(.7, nrow=4, ncol=4) + diag(4) * 0.3))),
dimnames=list(params=c('a','b','c','d'), iter=1:500), units="NA")

splom(flp)

spread A function to make available list elements inside a function or method

Description

Inside a function, a call to spread() will attach to the function environment, sys.frame(), the elements
in the list, or of the conversion to list of the object (e.g. named vector or FLPar), so that they be
called by name. The function environment will be deleted once the function returns, so those
variables won’t make it to the environment from which the function was called, or further up in the
call stack.

Usage

spread(object, FORCE = FALSE)

Arguments

object A named list or vector whose elements are to be loaded into the calling environ-
ment.

FORCE Should existing variable with matching names be redefined?

Details

By default, spread() will not overwrite variables in the function environment with the same name as
any list element, unless FORCE=TRUE

SRModels 123

Value

Invisibly the names of the variables loaded into the calling environment.

Author(s)

The FLR Team

See Also

sys.nframe

Examples

EXAMPLE function
foo <- function (params) {

a <- spread(params)
print(a)
x*y

}
x and y are accesible to the internal calculation
foo(params=list(x=3.5, y=9))

Works with FLPar
foo(params=FLPar(x=3L, y=0.99238))

Elements in object must be named
Not run: foo(list(3, y=0.99238))

If a variable is missing from the spread object, function will fail
Not run: foo(list(x=4))
Unless the variable is already defined in the calling environment,
in this case <environment: R_GlobalEnv>
y <- 45
foo(params=list(x=4))

SRModels Stock-Recruitment models

Description

A range of stock-recruitment (SR) models commonly used in fisheries science are provided in
FLCore.

Usage

ricker()

bevholt()

124 SRModels

bevholtDa()

bevholtss3()

segreg()

geomean()

shepherd()

cushing()

rickerSV()

bevholtSV()

shepherdSV()

bevholtAR1()

rickerAR1()

segregAR1()

rickerCa()

survRec(ssf, R0, Sfrac, beta, SF0 = ssf[, 1])

bevholtsig()

mixedsrr()

Arguments

rho Autoregression

sigma2 Autoregression

obs Observed values

hat estimated values

steepness Steepness.

vbiomass Virgin biomass.

spr0 Spawners per recruit at F=0, see spr0.

model character vector with model name, either ’bevholt’ or ’ricker’.

Details

Each method is defined as a function returning a list with one or more elements as follows:

SRModels 125

• model: Formula for the model, using the slot names rec and ssb to refer to the usual inputs

• logl: Function to calculate the loglikelihood of the given model when estimated through MLE
(See fmle)

• initial: Function to provide initial values for all parameters to the minimization algorithms
called by fmle or nls. If required, this function also has two attributes, lower and upper, that
give lower and upper limits for the parameter values, respectively. This is used by some of the
methods defined in optim, like "L-BFGS-B".

The model<- method for FLModel can then be called with value being a list as described above, the
name of the function returning such a list, or the function itself. See the examples below.

Several functions to fit commonly-used SR models are available. They all use maximum likelihood
to estimate the parameters through the method loglAR1.

• ricker: Ricker stock-recruitment model fit:

R = aSe−bS

a is related to productivity (recruits per stock unit at small stock size) and b to density depen-
dence. (a, b > 0).

• bevholt: Beverton-Holt stock-recruitment model fit:

R =
aS

b+ S

a is the maximum recruitment (asymptotically) and b is the stock level needed to produce the
half of maximum recruitment a

2 . (a, b > 0).

• segreg: Segmented regression stock-recruitment model fit:

R = ifelse(S ≤ b, aS, ab)

a is the slope of the recruitment for stock levels below b, and ab is the mean recruitment for
stock levels above b. (a, b > 0).

• geomean: Constant recruitment model fit, equal to the historical geometric mean recruitment.

(R1R2 . . . Rn)
1/n = emean(log(R1),...,

log(Rn))

• shepherd: Shepherd stock-recruitment model fit:

R =
aS

1 + (Sb)
c

a represents density-independent survival (similar to a in the Ricker stock-recruit model), b the
stock size above which density-dependent processes predominate over density-independent
ones (also referred to as the threshold stock size), and c the degree of compensation.

• cushing: Cushing stock-recruitment model fit:

R = aSeb

This model has been used less often, and is limited by the fact that it is unbounded for b>=1
as S increases. (a, b > 0).

126 SRModels

Stock recruitment models parameterized for steepness and virgin biomass:

• rickerSV: Fits a ricker stock-recruitment model parameterized for steepness and virgin biomass.

a = e
b·vbiomass

spr0

b =
log(5 · steepness)
0.8 · vbiomass

• bevholtSV: Fits a Beverton-Holt stock-recruitment model parameterised for steepness and vir-
gin biomass.

a =
4 · vbiomass · steepness

(spr0 · (5 · steepness− 1.0

b =
vbiomass(1.0− steepness)

5 · steepnes− 1.0

• sheperdSV: Fits a shepher stock-recruitment model parameterized for steepness and virgin
biomass.

a =
1.0 + (vbiomass

b)c

spr0

b = vbiomass(
0.2− steepness

steepness(0.2)c − 0.2
)(
−1.0

c
)

Models fitted using autoregressive residuals of first order:

• bevholtAR1, rickerAR1, segregAR1: Beverton-Holt, Ricker and segmented regression stock-
recruitment models with autoregressive normal log residuals of first order. In the model fit, the
corresponding stock-recruit model is combined with an autoregressive normal log likelihood
of first order for the residuals. If Rt is the observed recruitment and R̂t is the predicted
recruitment, an autoregressive model of first order is fitted to the log-residuals, xt = log(Rt

R̂t
).

xt = ρxt−1 + e

where e follows a normal distribution with mean 0: e ∼ N(0, σ2
AR).

Ricker model with one covariate. The covariate can be used, for example, to account for an enviro-
mental factor that influences the recruitment dynamics. In the equations, c is the shape parameter
and X is the covariate.

• rickerCa: Ricker stock-recruitment model with one multiplicative covariate.

R = a(1− cX)Se−bS

Author(s)

The FLR Team

ssb 127

References

Beverton, R.J.H. and Holt, S.J. (1957) On the dynamics of exploited fish populations. MAFF Fish.
Invest., Ser: II 19, 533.

Needle, C.L. Recruitment models: diagnosis and prognosis. Reviews in Fish Biology and Fisheries
11: 95-111, 2002.

Ricker, W.E. (1954) Stock and recruitment. J. Fish. Res. Bd Can. 11, 559-623.

Shepherd, J.G. (1982) A versatile new stock-recruitment relationship for fisheries and the construc-
tion of sustainable yield curves. J. Cons. Int. Explor. Mer 40, 67-75.

See Also

FLSR, FLModel

Examples

inspect the output of one of the model functions
bevholt()
names(bevholt())
bevholt()$logl

once an FLSR model is in the workspace ...
data(nsher)

the three model-definition slots can be modified
at once by calling 'model<-' with
(1) a list

model(nsher) <- bevholt()

(2) the name of the function returning this list
model(nsher) <- 'bevholt'

or (3) the function itself that returns this list
model(nsher) <- bevholt

ssb Calculate or return the Spawning Stock Biomass

Description

The calculated Spawning Stock Biomass (SSB) of a fish population is returned by this method. SSB
is the combined weight of all individuals in a fish stock that are capable of reproducing. In some
classes this is calculated from information stored in different slots, while in others ssb() is simply
an slot accessor. When the later is the case, the corresponding replacement method also exists.

128 ssb

For an object of class FLStock, the calculation of SSB depends on the value of the ’units’ attribute
in the harvest slot. If this is in terms of fishing mortality (units(harvest(object)) == 'f'), and
assuming an object structured by age, then SSB is calculated as

SSBy =
∑

a
Na,y · e−(Fa,y·Hsa,y+Ma,y·Msa,y) ·Wa,y · Ta,y

where Na,y is the abundance in numbers (stock.n) by age (a) and year (y), Fa,y is the fishing
mortality (harvest), Hsa,y is the proportion of fishing mortality before spawning (harvest.spwn),
Ma,y is the natural mortality (m), Msa,y is the proportion of natural mortality before spawning
(m.spwn), Wa,y is the mean weight at age in the stock (m), and Ta,y is the proportion mature at age in
the stock (mat). For FLStock objects with other dimensions (area, unit), the calculation is carried
out along those dimensions too. To obtain a global value please use the corresponding summing
method. If the harvest slot contains estimates in terms of harvest rates (units(harvest(object))
== "hr"), SSB will be computed as

SSBy =
∑

a
Na,y · (1−Ha,y ·Hsa,y) · e−(Ma,y·Msa,y) ·Wa,y · Ta,y

where Ha,y is the harvest rate (proportion of catch in weight over total biomass).

Usage

ssb(object, ...)

S4 method for signature 'FLStock'
ssb(object, ...)

S4 method for signature 'FLBiol'
ssb(object, ...)

Arguments

object Object on which ssb is calculated or extracted.

Details

Objects of the FLBiol class do not contain any information on catch or fishing mortality, so a call to
ssb() will only correct abundances for natural mortality to the moment of spawning. The method
can also take information on catches or fishing mortality and use them when calculating abundances
at spawning time. An FLQuant named either ’catch.n’, ’f’, ’hr’ or ’harvest’ can be used. The first
three are self-explanatory, while for the last units must be either ’f’ or ’hr’. The quantities should
refer to total yearly values, as the value in the ’spwn’ slot will be used to calculate what fraction of
fishing mortality to apply.

Value

An object, generally of class FLQuant.

Author(s)

The FLR Team

ssb_next 129

See Also

FLComp

areaSums

Examples

data(ple4)
SSB from FLStock
ssb(ple4)
biol <- as(ple4, "FLBiol")
SSB from FLBiol, abundances corrected only for M
ssb(biol)
Provide catch-at-age, F or HR to correct N
ssb(biol, catch.n=catch.n(ple4))
ssb(biol, f=harvest(ple4))
ssb(biol, harvest=harvest(ple4))
ssb(biol, hr=catch.n(ple4) / stock.n(ple4))

ssb_next Calculate next yera’s SSB from survivors and Fbar

Description

The spawning stock biomass (SSB) of the stock gets calculated from the survivors of the previous
year. This provides a value for the first year after the end of the object. Weights-at-age, maturity in
this extra year are calculated as averages over the last wts.nyears.

Usage

ssb_next(x, fbar = 0, wts.nyears = 3, fbar.nyears = 3)

Arguments

x An FLStock object containing estimates of abundance and harvesting.

fbar The Fbar rate assumed on the extra year. Defaults to 0.

wts.nyears Number of years in calculation of mean weight-at-age and maturity for the extra
year.

fbar.nyears Number of years in calculation of mean selectivity, natural mortality and fraction
of F abnd M before spawning for the extra year.

Details

For stocks spawning later in the year, a value for the average fishing mortality, fbar, expected in that
year can be provided. Mortality until spawning is then calculated, with M and selectivity assumed
in the extra year to be an average of the last fbar.nyears.

130 standardUnits

Value

An FLQuant.

Examples

data(ple4)
ssb_next(ple4)
Compare with ssb()
ssb(ple4)[, ac(2014:2017)] / ssb_next(ple4)[, ac(2014:2017)]

standardUnits Standard units of measurement for a complex class object

Description

Returns values for the units of each FLQuant slot according to the standard adopted by the FLR
Team for the supplied class.

Usage

standardUnits(object, ...)

S4 method for signature 'character'
standardUnits(object, ...)

S4 method for signature 'FLS'
standardUnits(object, ...)

S4 method for signature 'FLBiol'
standardUnits(object, ...)

Arguments

object for which the standard units are to be returned

Details

For objects derived from class FLS, which currently includes FLStock and FLStockLen, the adopted
standard includes: ’kg’ for individual weights, ’1000’ for number of individuals, ’t’ for biomass, ’f’
for harvest, ’m’ for natural mortality, and an empty string for proportions (spwn, mat).

For objects derived of class FLBiol the adopted standard units are: ’kg’ for individual weights,
’1000’ for number of individuals, ’m’ for natural mortality, and an empty string for proportions
(spwn, mat).

Value

A list with the corresponding units value for each slot

summary,FLArray-method 131

Author(s)

The FLR Team

See Also

units-FLCore

Examples

stk <- FLStock(catch=FLQuant(runif(20, 2, 120)))
FLStock object has no units
summary(stk)
Obtain standard units for the class as a list
standardUnits(stk)
which can then be assigned to the object
units(stk) <- standardUnits(stk)
summary(stk)
units<- methjod also accepts a function to be called to provide units
units(stk) <- standardUnits
bio <- FLBiol(n=FLQuant(runif(50, 2, 120), dim=c(5, 10)))
Object has no units
summary(bio)
Obtain standard units for the class as a list
standardUnits(bio)
which can then be assigned to the object
units(bio) <- standardUnits(bio)
summary(stk)

summary,FLArray-method

Method summary

Description

Outputs a general summary of the structure and content of an fwdControl object. The method
invisibly returns the data.frame shown on screen.

Usage

S4 method for signature 'FLArray'
summary(object, ...)

S4 method for signature 'FLQuantPoint'
summary(object, ...)

S4 method for signature 'FLPar'
summary(object, title = TRUE, ...)

132 survey

S4 method for signature 'FLComp'
summary(object, ...)

S4 method for signature 'FLQuants'
summary(object)

S4 method for signature 'predictModel'
summary(object)

S4 method for signature 'FLBiol'
summary(object)

S4 method for signature 'FLModel'
summary(object, ...)

S4 method for signature 'FLlst'
summary(object)

Generic function

summary(object)

Author(s)

The FLR Team

See Also

summary

Examples

flq <- FLQuant(rlnorm(90), dim=c(3,10), units='kg')
summary(flq)

data(ple4)
summary(ple4)

data(nsher)
summary(nsher)

survey A method to generate observations of abundance at age.

Description

A method to generate observations of abundance at age.

survey 133

Usage

survey(object, index, ...)

S4 method for signature 'FLStock,FLIndex'
survey(
object,
index,
sel = sel.pattern(index),
ages = dimnames(index)$age,
timing = mean(range(index, c("startf", "endf"))),
index.q = index@index.q,
stability = 1

)

S4 method for signature 'FLStock,FLIndexBiomass'
survey(
object,
index,
sel = sel.pattern(index),
ages = ac(seq(range(index, c("min")), range(index, c("max")))),
timing = mean(range(index, c("startf", "endf"))),
catch.wt = stock.wt(object)[, dimnames(index)$year],
index.q = index@index.q,
stability = 1

)

S4 method for signature 'FLStock,missing'
survey(
object,
sel = catch.sel(object),
ages = dimnames(sel)$age,
timing = 0.5,
index.q = 1,
biomass = FALSE,
stability = 1

)

S4 method for signature 'FLStock,FLIndices'
survey(object, index, ...)

Arguments

object The object on which to draw the observation

Value

An FLQuant for the index of abundance

134 survivors

Author(s)

The FLR Team

See Also

FLComp

Examples

data(ple4)
data(ple4.index)
CONSTRUCT a survey from stock and index
survey(ple4, ple4.index)
Create FLIndexBiomass
ple4.biom <- as(ple4.index, "FLIndexBiomass")
survey(ple4, ple4.biom)
data(ple4)
survey(ple4)
survey(ple4, biomass=TRUE)

survivors Calculate the survivors of a stock to the next year.

Description

An FLStock object containing estimates of adundance at age (’stock.n’) and harvest level at age
(’harvest’), is used to bring forward the population by applying the total mortality at age (’z’). No
calculation is made on recruitment, so abundances for the first age will be set as ’NA’, unless a value
is provided.

Usage

survivors(object, rec = NA)

Arguments

object An FLStock with estimated harvest and abundances

rec Value for recruitment, first age abundance, ’numeric’ or ’FLQuant’.’

Value

The abundances at age of the survivors, ’FLQuant’.

Examples

data(ple4)
stock.n(ple4[, ac(2002:2006)])
survivors(ple4[, ac(2002:2006)])

sweep,FLArray-method 135

sweep,FLArray-method Method sweep for FLCore classes

Description

Use R’s sweep method on FLCore classes

Usage

S4 method for signature 'FLArray'
sweep(x, MARGIN, STATS, FUN = "-", check.margin = TRUE, ...)

S4 method for signature 'FLPar'
sweep(x, MARGIN, STATS, FUN = "-", check.margin = TRUE, ...)

Details

These methods call base R sweep method on FLCore classes and then ensure that the returned
object is of same class.

Generic function

sweep(x, MARGIN, STATS, FUN = "-", check.margin = TRUE, ...)

Author(s)

The FLR Team

See Also

sweep

Examples

flq <- FLQuant(rlnorm(90), dim=c(3,10), units='kg')
Get ratio of max value by year
sweep(flq, 2, apply(flq, 2, max), "/")

136 tail,FLQuant-method

tail,FLQuant-method Returns the first and last parts of an FLQuant.

Description

Standard tail and head methods can be applied along any dimension of an FLQuant object.

Usage

S4 method for signature 'FLQuant'
tail(x, n = 1, dim = 2, ...)

S4 method for signature 'FLQuant'
head(x, n = 1, dim = 2, ...)

Arguments

x The object to extract from, FLQuant.

n The number of elements to extract, numeric.

dim Dimension to extract from, defaults to 2, ’year’.

Value

An FLQuant with the extracted elements.

Author(s)

Iago Mosqueira (WMR)

See Also

base::tail

Examples

x <- FLQuant(1:10)

Extract the last 3 years
tail(x, 3)

Extract all but the first 3 years
tail(x, -3)

Extract the first 3 years
head(x, 3)

Extract all but the last 3 years
head(x, -3)

trim 137

trim Method trim

Description

Trim FLR objects using named dimensions

Usage

trim(x, ...)

S4 method for signature 'FLArray'
trim(x, ...)

S4 method for signature 'FLComp'
trim(x, ...)

S4 method for signature 'FLS'
trim(x, ...)

S4 method for signature 'FLBiol'
trim(x, ...)

Details

Subsetting of FLR objects can be carried out with dimension names by using trim. A number of
dimension names and selected dimensions are passed to the method and those are used to subset the
input object.

Exceptions are made for those classes where certain slots might differ in one or more dimensions. If
trim is applied to an FLQuant object of length 1 in its first dimension and with dimension name equal
to ’all’, values to trim specified for that dimension will be ignored. For example, FLStock objects
contain slots with length=1 in their first dimension. Specifying values to trim over the first dimen-
sion will have no effect on those slots (catch, landings, discards, and stock). Calculations might
need to be carried out to recalculate those slots (e.g. using computeCatch, computeLandings,
computeDiscards and computeStock) if their quant-structured counterparts are modified along
the first dimension.

Generic function

trim(x)

Author(s)

The FLR Team

See Also

FLQuant, FLStock, FLCohort, FLIndex

138 units-FLCore

Examples

flq <- FLQuant(rnorm(90), dimnames=list(age=1:10, year=2000:2016))

trim(flq, year=2000:2005)
which is equivalent to
window(flq, start=2000, end=2005)

trim(flq, year=2000:2005, age=1:2)

Now on an FLStock
data(ple4)
summary(trim(ple4, year=1990:1995))

If 'age' is trimmed in ple4, catch, landings and discards need to be
recalculated

shpl4 <- trim(ple4, age=1:4)
landings(shpl4) <- computeLandings(shpl4)
discards(shpl4) <- computeDiscards(shpl4)
catch(shpl4) <- computeCatch(shpl4)
summary(shpl4)

units-FLCore Method units

Description

units attribute for FLQuant and FLArray-derived objects

Usage

S4 method for signature 'FLArray'
units(x)

S4 replacement method for signature 'FLArray,character'
units(x) <- value

setunits(x, value)

S4 method for signature 'FLPar'
units(x)

S4 replacement method for signature 'FLPar,character'
units(x) <- value

S4 method for signature 'FLComp'
units(x)

units-FLCore 139

S4 replacement method for signature 'FLComp,list'
units(x) <- value

S4 replacement method for signature 'FLComp,character'
units(x) <- value

S4 replacement method for signature 'FLComp,function'
units(x) <- value

Details

Objects of FLArray-based classes (e.g. FLQuant) contain a units attribute of class character.
This should be used to store the corresponding units of measurement. This attribute can be directly
accessed and modified using the units and units<- methods.

For complex objects, units will return a named list containing the attributes of all FLQuant slots.
units of a complex object can be modified for all slots or a subset of them, by passing a named list
with the new values. See examples below.

The complete set of units for a complex object can be obtained as a named list.

Assignment of units to the FLQuant slots of a complex object can be carried out passing a named
list or character vector containing the units for the slots to be modified.

Generic function

units(x)

units<-(x,value)

Author(s)

The FLR Team

See Also

FLQuant, FLPar, FLCohort

Examples

flq <- FLQuant(rnorm(100), dim=c(5,20), units='kg')
units(flq)
units(flq) <- 't'
summary(flq)

units for a complex object
data(ple4)
units(ple4)
units(ple4) <- list(harvest='hr')

data(ple4)
units(ple4) <- list(harvest="hr")
units(ple4) <- c(harvest="hr")

140 uom

uom uom Units of Measurement

Description

The ’units’ attribute of FLQuant objects provides a mechanism for keeping track of the units of
measurement of that particular piece of data.

Usage

uom(op, u1, u2)

uomUnits(unit = missing)

Arguments

op The arithmetic operator to be used, one of ’+’, ’-’, ’*’ or ’/’

u1 The units of measurement string of the first object

u2 The units of measurement string of the second object

unit A character vector for one or more units to be compared with those known to
uom.

Details

Arithmetic operators for ’FLQuant’ objects are aware of a limited set of units of measurement and
will output the right unit when two object are arithmetically combined. For example, the product of
object with units of ’kg’ and ’1000’ will output an object with ’units’ of ’t’ (for metric tonnes).

Operations involving combinations of units not defined will issue a warning, and the resulting ’units’
attribute will simply keep a string indicating the input units of measurement and the operation
carried out, as in ’10 * 1000’.

Note that no scaling or modification of the values in the object takes place.

Conversion across units is carried out by the uom() function

The list of units known to uom is stored internally but can be queried by calling uomUnits() with
no arguments. If a character vector is provided, a logical is returned telling whether the string is
included or not in that table.

Value

uom returns a string with the corresponding units of measurement, or a character vector, showing
the operation carried out, when units are not known to uom or not compatible, e.g. "100 * d".

uomUnits returns TRUE or FALSE if unit is given, otherwise a character vector with all units
known to uom.

Author(s)

The FLR Team

uomTable 141

See Also

FLQuant units,FLArray-method

Examples

Conversion between weights
FLQuant(1, units='kg') * FLQuant(1000, units='1')

Conversion between mortalities
FLQuant(0.2, units='m') + FLQuant(0.34, units='f')

Check if units are known
uomUnits('kg')
uomUnits('kell')

uomTable Table for conversions and operations between units of measurement

Description

• uom defaults to NA unless defined below.

• unit +/- itself, returns the same unit (e.g. kg + kg = kg)

• numeric unit * 1 returns same unit (e.g. 1e4 * 1 = 1e4)

• numeric unit * numeric unit returns product (e.g. 10 * 100 = 1000)

• unit / unit returns "" (e.g. 100 / 100 = "")

• numeric unit / smaller numeric unit returns division (e.g. 100 / 10 = 10)

• 100 times kg returns t

• numeric unit * ’kg’ returns the product in tonnes (e.g. kg * 1e4 = t * 10)

• units with divisions are parsed (e.g. days/boat * boat = days)

•

•

Format

An object of class array

142 upperlower

upperlower Extract and modify the lower and upper FLModel attibutes.

Description

Description: Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Usage

lower(object, ...)

S4 method for signature 'FLModel'
lower(object)

S4 method for signature 'FLModel'
upper(object)

Arguments

object Object to extract from or modify

... Other arguments

value New value

Details

Details: Aliquam sagittis feugiat felis eget consequat.

Value

RETURN Lorem ipsum dolor sit amet

Author(s)

The FLR Team

See Also

FLModel

verify 143

verify Verify FLR objects

Description

Verifies the content of FLR objects according to a set of rules

Usage

verify(object, ...)

S4 method for signature 'FLComp'
verify(object, ..., report = TRUE)

S4 method for signature 'FLStock'
verify(object, rules = ruleset(object), ..., report = TRUE)

Arguments

object An object of any FLR class for which the method has been defined

... Additional rules to be tested, as a formula or list. See details

report Should the standard data.frame report be output (if TRUE) or a single logical
value for all tests?

rules Basic set of rules for a given class, as returned by ruleset().

Details

Classes’ validity functions generally check the structure and dimensions of objects and their com-
ponent slots. But some checks on the data content of objects is often required. The various verify
methods implement both a system to create rules that an object is expected to pass, and a minimum
standard set of rules for each defined class

The data.frame output by the method when report=TRUE contains one row per rule and the follow-
ing columns:

• name, the rule name

• items, number of comparisons carried out

• passes, number of TRUE values

• fails, number of FALSE values

• NAs, number of logical NAs

• valid, are all values TRUE?

• rule, the expression being evaluated

144 verify

Additional rules can be specify in a call to verify, in one of two forms. Simple rules can be defined
as a formula involving methods defined for the class. A rule such as highm = ~ m < 2 will check if
values in the m slot are higher than 2 and return a logical FLQuant.

Some rules cannot simply use existing methods or functions, for example those operating on all
slots of the object, or requiring additional computations. In this case, the argument to verify can be
a list, with an element named rule of class formula and where test is defined. The test then calls
for a new function, defined as another element of the list, and which will be used by verify when
evaluating the set of rules. See below for examples.

A set of rules has been defined for the FLStock class, available by calling the ruleset method. The
verify method for FLStock will by default evaluate those rules, as well as any other defined in the
call.

Value

A data.frame with the results of applying those rules, or a single logical value, if report=FALSE

Author(s)

The FLR Team

See Also

ruleset

Examples

Verifying a new rule for an FLSR object
data(nsher)
rule: are all recruitment values greater than 0?
verify(nsher, rec=~rec > 0)

Define rule calling its own function
data(ple4)
rule: ssb is less
verify(ple4, ssbstock = ~ssb < stock)
data(ple4)
verify for the standard set of rules for FLStock
verify(ple4)
verify a single rule from set
verify(ple4, rules=ruleset(ple4, 'anyna'), report=FALSE)

add own rule to set
verify(ple4, m = ~m >=0)

vonbert 145

vonbert Growth models

Description

Growth models

ivonbert

gompertz

richards

Usage

vonbert(linf, k, t0, age)

ivonbert(linf, k, t0, len)

gompertz(linf, a, k, age)

richards(linf, k, b, m, age)

Examples

data(ple4)
vonbert

vonbert(linf=35, k=0.352, t0=-0.26, age=1:14)
ivonbert(35, 0.352, -0.26, 1:34)
gompertz(linf=179.13, k=0.4088, a=1.7268, age=1:12)
richards(linf=178.63, k=0.424, b=-7.185, m=2880.4, age=1:12)

weighted.mean,FLQuants,FLQuants-method

Weighted means along a FLQuants.

Description

Facilitates the calculation of weighted means across a FLQuants object.

Usage

S4 method for signature 'FLQuants,FLQuants'
weighted.mean(x, w)

146 wireframe

Arguments

x Values to be averaged, as an object of class FLQuants.

w weights to be used, as an object of class FLQuants.

Details

An object of class FLQuants containing elements over which an average is to computed, is com-
bined with another one, of the same length, containing values to be used as weights. The overall
weighted mean is calculated by computing the product of each element to its corresponding weight,
and dividing by the sum of all weights. NAs in the value elements are substituted for zeroes, so do
not influence the mean.

Value

A single FLQuant object.

Author(s)

The FLR Team

See Also

FLCore::FLQuants stats::weighted.mean

Examples

data(ple4)
Weighted mean of landings and discards weights-at-age
weighted.mean(FLQuants(L=landings.wt(ple4), D=discards.wt(ple4)),

FLQuants(L=landings.n(ple4), D=discards.n(ple4)))

wireframe Method wireframe

Description

3D plot for FLQuant objects

Usage

S4 method for signature 'formula,FLQuant'
wireframe(x, data, ...)

Arguments

x a formula formula for lattice

data a FLQuant object with the values

... Additional argument list to be passed to wireframe

yearSample 147

Details

Method to plot 3D representations of FLQuant objects

Value

a wireframe plot

Examples

data(ple4)
wireframe(data~age+year, data=harvest(ple4))

yearSample Samples along the year dimension

Description

A resample from an FLQuant object along the ’year’ dimension is returned. The ’year’ dimnames
of the output object can be specified, although that is not needed if the resample is to be assigned in
a slot.

Usage

yearSample(x, size = length(years), years, replace = TRUE, prob = NULL)

Arguments

x An FLQuant object.

size Number of samples (years), non-negative integer.

years Optional vector to set as ’year’ dimnames in output.

replace should sampling be with replacement? Defaults to TRUE.

prob a vector of probability weights.

Value

RETURN Description, class

Author(s)

Iago Mosqueira (WMR)

See Also

FLQuant sample()

148 z

Examples

data(ple4)
Take 20 samples of recent recruitment
yearSample(rec(ple4)[, ac(2013:2017)], 20)
Providing 'years' sets the output object dimnames
yearSample(rec(ple4)[, ac(2013:2017)], 20, year=2000:2019)

z Total mortality z

Description

Returns the calculation of total mortality, z, usually as the sum of fishing mortality, f, and natural
mortality, m.

Usage

z(object, ...)

S4 method for signature 'FLS'
z(object, ...)

Arguments

object Object to calculate on.

... Any extra arguments.

Value

An object of the corresponding class, usually FLQuant.

Author(s)

The FLR Team

See Also

FLQuant

Examples

data(ple4)

z(ple4)

%+% 149

%+% FLQuant arithmetic operators that extend objects

Description

Arithmetic operations between two FLQuant objects using the standars operators (+, -, *, /, ^,
see Arith) need all dimensions in both objects to match. This requirement is relaxed by using the
percent version of those five operators: %+%, %-%, %*%, %/% and %^%.

Usage

e1 %+% e2

x %-% y

x %^% y

S4 method for signature 'FLQuant,FLQuant'
x %*% y

S4 method for signature 'FLQuant,FLQuant'
e1 %/% e2

S4 method for signature 'FLQuant,FLQuant'
e1 %+% e2

S4 method for signature 'FLQuant,FLQuant'
x %-% y

S4 method for signature 'FLQuant,FLQuant'
x %^% y

S4 method for signature 'FLPar,FLQuant'
x %*% y

S4 method for signature 'FLPar,FLQuant'
e1 %/% e2

S4 method for signature 'FLPar,FLQuant'
e1 %+% e2

S4 method for signature 'FLPar,FLQuant'
x %-% y

S4 method for signature 'FLPar,FLQuant'
x %^% y

150 %+%

S4 method for signature 'FLQuant,FLPar'
x %*% y

S4 method for signature 'FLQuant,FLPar'
e1 %/% e2

S4 method for signature 'FLQuant,FLPar'
e1 %+% e2

S4 method for signature 'FLQuant,FLPar'
x %-% y

S4 method for signature 'FLQuant,FLPar'
x %^% y

S4 method for signature 'FLPar,FLPar'
x %*% y

S4 method for signature 'FLPar,FLPar'
e1 %+% e2

S4 method for signature 'FLPar,FLPar'
x %-% y

S4 method for signature 'FLPar,FLPar'
e1 %/% e2

S4 method for signature 'FLPar,FLPar'
x %^% y

S4 method for signature 'FLQuants,FLPar'
e1 / e2

S4 method for signature 'FLQuants,FLPar'
e1 * e2

S4 method for signature 'FLQuants,FLPars'
e1 / e2

S4 method for signature 'FLQuants,FLPars'
e1 * e2

S4 method for signature 'FLQuants,FLQuants'
e1 / e2

S4 method for signature 'FLQuants,FLQuants'
e1 * e2

%+% 151

S4 method for signature 'FLQuants,FLQuants'
e1 + e2

S4 method for signature 'FLQuants,FLQuants'
e1 - e2

Details

If any of the objects is of length one in a dimensions where the other is longer, the dimensions will
be extended and the element-by-element operation then conducted. Dimensions and dimnames of
the output will be those of the larger object. See the examples to observe their behaviour.

Please note that this behaviour is already present on the Arith methods for FLArray-derived classes
but only on the 6th, iter, dimension.

The original use of the %*% operator, as vector product, is not available for FLQuant objects, but can
be applied to the array inside them, as in the example below.

Methods for operations between an FLQuant and an FLPar object will match dimensions by names
of dimnames, regardless of position.

Generic function

x %+% y, x %-% y, x %*% y, e1 %/% e2, x %^% y

Author(s)

The FLR Team

See Also

FLQuant, matmult

Examples

a <- FLQuant(2, dim=c(3,3,2))
b <- FLQuant(3, dim=c(3,3,1))

This should fail
Not run: a * b

a %*% b
a %+% b
To use base's %*% vector product, apply it to a matrix from @.Data
b@.Data[,,,,,] %*% 1:3
or
b[,,drop=TRUE] %*% 1:3

FLPar vs. FLQuant works by dimnames' names
flp <- FLPar(2, dimnames=list(params='a', year=2000:2005, iter=1))
flq <- FLQuant(3, dimnames=list(year=2000:2005))
flp %*% flq

152 %+%

Divide each FLQuants element by a 'param' in FLPar, e.g. time series
divide by reference points
FLQuants(SSB=FLQuant(2303), F=FLQuant(0.8)) / FLPar(SSB=1560, F=0.4)

Product of each FLQuants element by a 'param' in FLPar
FLQuants(SSB=FLQuant(2303), F=FLQuant(0.8)) * FLPar(SSB=1560, F=0.4)
Divide each FLQuants element by each in FLPars
FLQuants(A=FLQuant(2303), B=FLQuant(1287)) /

FLPars(A=FLPar(SBMSY=1560), B=FLPar(SBMSY=1000))
Divide each FLQuants element by each in FLPars
FLQuants(A=FLQuant(2303), B=FLQuant(1287)) *

FLPars(A=FLPar(SBMSY=1560), B=FLPar(SBMSY=1000))
Divide each FLQuants element by each in FLPars
FLQuants(A=FLQuant(300), B=FLQuant(200)) /

FLQuants(A=FLQuant(3), B=FLQuant(2))
Divide each FLQuants element by each in FLPars
FLQuants(A=FLQuant(100), B=FLQuant(200)) *

FLQuants(A=FLQuant(3), B=FLQuant(2))
Divide each FLQuants element by each in FLPars
FLQuants(A=FLQuant(100), B=FLQuant(200)) *

FLQuants(A=FLQuant(3), B=FLQuant(2))
Divide each FLQuants element by each in FLPars
FLQuants(A=FLQuant(100), B=FLQuant(200)) *

FLQuants(A=FLQuant(3), B=FLQuant(2))

Index

∗ FLCoreClasses
FLQuant, 65

∗ arith
discardsRatio, 37

∗ classes
ar1rlnorm, 13
as.FLSRs, 16
bias, 16
FLArray, 44
FLBiol, 45
FLBiols, 46
FLCohort, 47
FLCohorts, 49
FLComp, 50
FLComps, 51
FLI, 52
FLIndex, 53
FLIndexBiomass, 54
FLIndices, 56
FLlst, 57
FLModel, 58
FLModelSim, 60
FLModelSims, 61
FLPar, 62
FLParJK, 63
FLPars, 64
FLQuant, 65
FLQuantDistr, 68
FLQuantJK, 70
FLQuantPoint, 71
FLQuants, 73
FLS, 74
FLSR, 75
FLSRs, 78
FLStock, 79
FLStockLen, 81
FLStocks, 83
FUNCTION, 84
predictModel, 105

rwalk, 117
survey, 132
yearSample, 147

∗ datasets
datasets, 28
uomTable, 141

∗ function
uom, 140

∗ list
spread, 122

∗ manip
computeHarvest,FLStock,missing-method,

25
∗ methods

%+%, 149
accessors, 5
ageopt, 9
AIC, 10
append-FLCore, 11
apply,FLArray,numeric,function-method,

12
Arith,numeric,FLArray-method, 14
BIC, 18
bubbles, 19
catch.n,FLQuant-method, 20
coerce-methods, 21
compare, 22
compute, 23
cpue, 26
createFLAccesors, 27
dbind, 29
dims, 30
dimSummaries, 32
drop,FLArray-method, 38
exp,FLQuant-method, 40
Extract, 40
fwdWindow, 85
getSlotNamesClass, 87
group, 87

153

154 INDEX

iav, 88
intersect, 91
iter, 92
jackknife, 93
join, 94
lattice, 95
metrics, 100
msy, 101
names, 102
plot, 103
production, 106
propagate, 107
properties, 108
quant, 109
quantTotals, 110
ruleset, 114
show, 118
simplify, 119
slim, 120
split-methods, 121
splom, 121
ssb, 127
standardUnits, 130
summary,FLArray-method, 131
sweep,FLArray-method, 135
tail,FLQuant-method, 136
trim, 137
units-FLCore, 138
upperlower, 142
verify, 143
weighted.mean,FLQuants,FLQuants-method,

145
z, 148

∗ models
ffwd, 43
SRModels, 123

∗ ts
catchInmature, 21
meanage, 98
meanwt, 99

∗ utilities
evalPredictModel, 39

*, 50, 74
*,FLQuants,FLPar-method (%+%), 149
*,FLQuants,FLPars-method (%+%), 149
*,FLQuants,FLQuants-method (%+%), 149
+,FLQuants,FLQuants-method (%+%), 149
-,FLQuants,FLQuants-method (%+%), 149

/,FLQuants,FLPar-method (%+%), 149
/,FLQuants,FLPars-method (%+%), 149
/,FLQuants,FLQuants-method (%+%), 149
[, 49, 50, 58, 62, 75, 80, 82
[,FLArray,ANY,ANY,ANY-method (Extract),

40
[,FLArray,array,missing,missing-method

(Extract), 40
[,FLComp,ANY,ANY,ANY-method (Extract),

40
[,FLI,ANY,ANY,ANY-method (Extract), 40
[,FLPar,ANY,ANY,ANY-method (Extract), 40
[,FLPar,array,missing,missing-method

(Extract), 40
[,FLQuantDistr,ANY,ANY,ANY-method

(Extract), 40
[,FLQuantDistr,array,missing,missing-method

(Extract), 40
[,FLStock,ANY,ANY,ANY-method (Extract),

40
[,FLlst,ANY,missing,ANY-method

(Extract), 40
[,predictModel,ANY,missing,ANY-method

(Extract), 40
[<-, 50, 58, 62, 75, 80, 82
[<-,FLArray,ANY,ANY,ANY-method

(Extract), 40
[<-,FLArray,ANY,ANY,FLArray-method

(Extract), 40
[<-,FLComp,ANY,ANY,ANY-method

(Extract), 40
[<-,FLPar,ANY,ANY,ANY-method (Extract),

40
[<-,FLStock,ANY,ANY,FLStock-method

(Extract), 40
[<-,FLlst,ANY,missing,ANY-method

(Extract), 40
[[<-, 58
[[<-,FLlst,ANY,missing,ANY-method

(Extract), 40
[[<-,FLlst,ANY,missing-method

(Extract), 40
$,FLPar-method (Extract), 40
$,FLQuant-method (Extract), 40
$<-, 58
$<-,FLPar,ANY-method (Extract), 40
$<-,FLPar-method (Extract), 40
$<-,FLlst,ANY-method (Extract), 40

INDEX 155

$<-,FLlst-method (Extract), 40
% (%+%), 149
%*%,FLPar,FLPar-method (%+%), 149
%*%,FLPar,FLQuant-method (%+%), 149
%*%,FLQuant,FLPar-method (%+%), 149
%*%,FLQuant,FLQuant-method (%+%), 149
%+%,FLPar,FLPar-method (%+%), 149
%+%,FLPar,FLQuant-method (%+%), 149
%+%,FLQuant,FLPar-method (%+%), 149
%+%,FLQuant,FLQuant-method (%+%), 149
%+%-methods (%+%), 149
%-% (%+%), 149
%-%,FLPar,FLPar-method (%+%), 149
%-%,FLPar,FLQuant-method (%+%), 149
%-%,FLQuant,FLPar-method (%+%), 149
%-%,FLQuant,FLQuant-method (%+%), 149
%-%-methods (%+%), 149
%/%,FLPar,FLPar-method (%+%), 149
%/%,FLPar,FLQuant-method (%+%), 149
%/%,FLQuant,FLPar-method (%+%), 149
%/%,FLQuant,FLQuant-method (%+%), 149
%^% (%+%), 149
%^%,FLPar,FLPar-method (%+%), 149
%^%,FLPar,FLQuant-method (%+%), 149
%^%,FLQuant,FLPar-method (%+%), 149
%^%,FLQuant,FLQuant-method (%+%), 149
%^%-methods (%+%), 149
%+%, 149
‘[<-,FLArray,ANY,ANY,ANY-method‘

(Extract), 40
‘[<-,FLArray,ANY,ANY,FLArray-method‘

(Extract), 40
0,1, 112

1, 46, 50, 52, 55
6, 72

ab2sv (SRModels), 123
abind (dbind), 29
acc, 4
accessors, 5
adjust,FLStock-method, 8
ageopt, 9
AIC, 10, 10, 18, 59, 60
AIC,FLModel,missing-method (AIC), 10
AIC,FLModel,numeric-method (AIC), 10
append,FLStock,FLStock-method

(append-FLCore), 11
append-FLCore, 11

apply, 36, 72
apply,FLArray,numeric,function-method,

12
apply,FLPar,ANY,ANY-method

(apply,FLArray,numeric,function-method),
12

apply,FLParJK,numeric,function-method
(apply,FLArray,numeric,function-method),
12

apply,FLQuantJK,numeric,function-method
(apply,FLArray,numeric,function-method),
12

ar1rlnorm, 13
areaMeans (dimSummaries), 32
areaMeans,FLQuant-method

(dimSummaries), 32
areaMeans,FLQuantDistr-method

(dimSummaries), 32
areaSums, 129
areaSums (dimSummaries), 32
areaSums,FLQuant-method (dimSummaries),

32
areaSums,FLQuantDistr-method

(dimSummaries), 32
areaVars (dimSummaries), 32
areaVars,FLQuant-method (dimSummaries),

32
areaVars,FLQuantDistr-method

(dimSummaries), 32
Arith, 13, 15, 50, 74, 149, 151
Arith,FLArray,FLArray-method

(Arith,numeric,FLArray-method),
14

Arith,FLArray,FLPar-method
(Arith,numeric,FLArray-method),
14

Arith,FLArray,numeric-method
(Arith,numeric,FLArray-method),
14

Arith,FLPar,FLArray-method
(Arith,numeric,FLArray-method),
14

Arith,FLPar,FLPar-method
(Arith,numeric,FLArray-method),
14

Arith,numeric,FLArray-method, 14
array, 49, 65–67, 151
as.data.frame, 49, 50, 62, 74, 75

156 INDEX

as.data.frame-FLCore, 96
as.FLBiol, 46, 80, 82
as.FLSR, 46, 80, 82
as.FLSR(), 16
as.FLSRs, 16
auc (roc), 114

barchart, 96
barchart,formula,FLComp-method

(lattice), 95
barchart,formula,FLQuant-method

(lattice), 95
base::append, 11
base::apply, 13
base::Arithmetic, 15
base::as, 22
base::coerce, 22
base::drop, 38–40
base::exp, 40
base::intercept, 91
base::log, 40
base::tail, 136
bevholt (SRModels), 123
Bevholt.SV (SRModels), 123
bevholt.sv (SRModels), 123
bevholtAR1 (SRModels), 123
bevholtDa (SRModels), 123
bevholtsig (SRModels), 123
bevholtss3 (SRModels), 123
bevholtSV (SRModels), 123
bheqz (indicators.len), 89
bias, 16
bias,FLParJK-method (bias), 16
BIC, 18, 18, 59, 60
BIC,FLModel-method (BIC), 18
bmsy (msy), 101
bmsy-methods (msy), 101
bubbles, 19, 49, 50, 74
bubbles,formula,data.frame-method

(bubbles), 19
bubbles,formula,FLCohort-method

(bubbles), 19
bubbles,formula,FLQuant-method

(bubbles), 19
bubbles,formula,FLQuants-method

(bubbles), 19
bubbles-methods (bubbles), 19
bwplot, 96, 104

bwplot,formula,FLComp-method (lattice),
95

bwplot,formula,FLQuant-method
(lattice), 95

catch, 80
catch (accessors), 5
catch,FLStock-method (FLStock), 79
catch,FLStockLen-method (FLStockLen), 81
catch.n, 80
catch.n,FLBiol-method, 46
catch.n,FLIndex-method (FLIndex), 53
catch.n,FLIndexBiomass-method

(FLIndexBiomass), 54
catch.n,FLQuant-method, 20
catch.n,FLStock-method (FLStock), 79
catch.n,FLStockLen-method (FLStockLen),

81
catch.n<-, 80
catch.n<-,FLIndex,FLQuant-method

(FLIndex), 53
catch.n<-,FLIndex,numeric-method

(FLIndex), 53
catch.n<-,FLIndexBiomass,FLQuant-method

(FLIndexBiomass), 54
catch.n<-,FLIndexBiomass,numeric-method

(FLIndexBiomass), 54
catch.n<-,FLStock,FLQuant-method

(FLStock), 79
catch.n<-,FLStock,numeric-method

(FLStock), 79
catch.n<-,FLStockLen,FLQuant-method

(FLStockLen), 81
catch.n<-,FLStockLen,numeric-method

(FLStockLen), 81
catch.wt, 80
catch.wt,FLIndex-method (FLIndex), 53
catch.wt,FLIndexBiomass-method

(FLIndexBiomass), 54
catch.wt,FLStock-method (FLStock), 79
catch.wt,FLStockLen-method

(FLStockLen), 81
catch.wt<-, 80
catch.wt<-,FLIndex,FLQuant-method

(FLIndex), 53
catch.wt<-,FLIndex,numeric-method

(FLIndex), 53
catch.wt<-,FLIndexBiomass,FLQuant-method

(FLIndexBiomass), 54

INDEX 157

catch.wt<-,FLIndexBiomass,numeric-method
(FLIndexBiomass), 54

catch.wt<-,FLStock,FLQuant-method
(FLStock), 79

catch.wt<-,FLStock,numeric-method
(FLStock), 79

catch.wt<-,FLStockLen,FLQuant-method
(FLStockLen), 81

catch.wt<-,FLStockLen,numeric-method
(FLStockLen), 81

catch<-, 50, 74, 80
catch<- (accessors), 5
catch<-,FLS,FLQuants-method

(accessors), 5
catch<-,FLStock,FLQuant-method

(FLStock), 79
catch<-,FLStock,FLQuants-method

(FLStock), 79
catch<-,FLStock,numeric-method

(FLStock), 79
catch<-,FLStockLen,FLQuant-method

(FLStockLen), 81
catch<-,FLStockLen,numeric-method

(FLStockLen), 81
catchInmature, 21
catchMature (catchInmature), 21
ccplot, 49
character, 66, 67
coerce, 46, 58, 80
coerce-methods, 21
compare, 22
compute, 23
computeCatch, 8, 53–55, 80, 82
computeCatch (compute), 23
computeCatch,FLS-method (compute), 23
computeCatch,FLStock-method (compute),

23
computeCatch,FLStockLen-method

(compute), 23
computeCatch-methods (compute), 23
computeDiscards, 80, 82
computeDiscards (compute), 23
computeDiscards,FLS-method (compute), 23
computeDiscards,FLStock-method

(compute), 23
computeDiscards-methods (compute), 23
computeHarvest (compute), 23
computeHarvest,FLStock,missing-method,

25
computeHarvest-methods (compute), 23
computeLandings, 80, 82
computeLandings (compute), 23
computeLandings,FLS-method (compute), 23
computeLandings,FLStock-method

(compute), 23
computeLandings,FLStockLen-method

(compute), 23
computeLandings-methods (compute), 23
computeStock (compute), 23
computeStock,FLS-method (compute), 23
computeStock,FLStock-method (compute),

23
computeStock,FLStockLen-method

(compute), 23
computeStock-methods (compute), 23
covar,FLSR-method (FLSR), 75
covar<-,FLSR,FLQuants-method (FLSR), 75
cpue, 26
cpue,FLStock,missing-method (cpue), 26
cpue,FLStock-method (cpue), 26
cpue-methods (cpue), 26
createFLAccesors, 27
cushing (SRModels), 123

data.frame, 96
datasets, 28
dbind, 29
dbind,FLArray,FLArray-method (dbind), 29
dbind-methods (dbind), 29
densityplot, 62, 96
densityplot,formula,FLPar-method

(lattice), 95
desc (accessors), 5
desc,FLBiol-method (FLBiol), 45
desc,FLComp-method (FLComp), 50
desc,FLIndex-method (FLIndex), 53
desc,FLIndexBiomass-method

(FLIndexBiomass), 54
desc,FLSR-method (FLSR), 75
desc,FLStock-method (FLStock), 79
desc,FLStockLen-method (FLStockLen), 81
desc<- (accessors), 5
desc<-,FLBiol,character-method

(FLBiol), 45
desc<-,FLComp,character-method

(FLComp), 50

158 INDEX

desc<-,FLIndex,character-method
(FLIndex), 53

desc<-,FLIndexBiomass,character-method
(FLIndexBiomass), 54

desc<-,FLSR,character-method (FLSR), 75
desc<-,FLStock,character-method

(FLStock), 79
desc<-,FLStockLen,character-method

(FLStockLen), 81
details (accessors), 5
details,FLSR-method (FLSR), 75
details<- (accessors), 5
details<-,FLSR,list-method (FLSR), 75
dimMeans (dimSummaries), 32
dimnames, 32
dims, 30, 53–55
dims,FLQuant-method (dims), 30
dims-methods (dims), 30
dimSummaries, 32
dimSums (dimSummaries), 32
dimVars (dimSummaries), 32
discards, 80
discards (accessors), 5
discards,FLStock-method (FLStock), 79
discards,FLStockLen-method

(FLStockLen), 81
discards.n, 80
discards.n,FLStock-method (FLStock), 79
discards.n,FLStockLen-method

(FLStockLen), 81
discards.n<-, 80
discards.n<-,FLStock,FLQuant-method

(FLStock), 79
discards.n<-,FLStock,numeric-method

(FLStock), 79
discards.n<-,FLStockLen,FLQuant-method

(FLStockLen), 81
discards.n<-,FLStockLen,numeric-method

(FLStockLen), 81
discards.wt, 80
discards.wt,FLStock-method (FLStock), 79
discards.wt,FLStockLen-method

(FLStockLen), 81
discards.wt<-, 80
discards.wt<-,FLStock,FLQuant-method

(FLStock), 79
discards.wt<-,FLStock,numeric-method

(FLStock), 79

discards.wt<-,FLStockLen,FLQuant-method
(FLStockLen), 81

discards.wt<-,FLStockLen,numeric-method
(FLStockLen), 81

discards<-, 80
discards<- (accessors), 5
discards<-,FLStock,FLQuant-method

(FLStock), 79
discards<-,FLStock,numeric-method

(FLStock), 79
discards<-,FLStockLen,FLQuant-method

(FLStockLen), 81
discards<-,FLStockLen,numeric-method

(FLStockLen), 81
discardsRatio, 37
distr (accessors), 5
distr<- (accessors), 5
distribution (accessors), 5
distribution,FLIndex-method (FLIndex),

53
distribution,FLIndexBiomass-method

(FLIndexBiomass), 54
distribution,FLSR-method (FLSR), 75
distribution<- (accessors), 5
distribution<-,FLIndex,character-method

(FLIndex), 53
distribution<-,FLIndexBiomass,character-method

(FLIndexBiomass), 54
distribution<-,FLSR,character-method

(FLSR), 75
distribution<-,FLSR,factor-method

(FLSR), 75
dotplot, 96
dotplot,formula,FLComp-method

(lattice), 95
dotplot,formula,FLQuant-method

(lattice), 95
drop,FLArray-method, 38
drop,FLQuant-method

(drop,FLArray-method), 38

effort (accessors), 5
effort,FLIndex-method (FLIndex), 53
effort,FLIndexBiomass-method

(FLIndexBiomass), 54
effort<- (accessors), 5
effort<-,FLIndex,FLQuant-method

(FLIndex), 53

INDEX 159

effort<-,FLIndexBiomass,FLQuant-method
(FLIndexBiomass), 54

evalPredictModel, 39
exp,FLQuant-method, 40
Extract, 40, 42, 43

fbar, 98
fec (accessors), 5
fec,FLBiol-method (FLBiol), 45
fec<- (accessors), 5
fec<-,FLBiol,FLQuant-method (FLBiol), 45
ffwd, 43
fitted (accessors), 5
fitted,FLSR-method (FLSR), 75
fitted<- (accessors), 5
fitted<-,FLSR,FLArray-method (FLSR), 75
fitted<-,FLSR,numeric-method (FLSR), 75
FLArray, 13, 30, 38, 44, 151
FLArray-class (FLArray), 44
FLBiol, 8, 28, 45, 106
FLBiol,FLQuant-method (FLBiol), 45
FLBiol,missing-method (FLBiol), 45
FLBiol-class (FLBiol), 45
FLBiol-methods (FLBiol), 45
FLBiolcpp-class (FLBiol), 45
FLBiols, 46
FLBiols,FLBiol-method (FLBiols), 46
FLBiols,list-method (FLBiols), 46
FLBiols,missing-method (FLBiols), 46
FLBiols-class (FLBiols), 46
FLBiols-methods (FLBiols), 46
flc2flq, 49
FLCohort, 19, 45, 47, 66, 109, 137, 139
FLCohort,array-method (FLCohort), 47
FLCohort,FLCohort-method (FLCohort), 47
FLCohort,FLQuant-method, 49
FLCohort,FLQuant-method (FLCohort), 47
FLCohort,missing-method (FLCohort), 47
FLCohort,vector-method (FLCohort), 47
FLCohort-class (FLCohort), 47
FLCohort-methods (FLCohort), 47
FLCohorts, 49
FLCohorts,ANY-method (FLCohorts), 49
FLCohorts,FLCohorts-method (FLCohorts),

49
FLCohorts,list-method (FLCohorts), 49
FLCohorts,missing-method (FLCohorts), 49
FLCohorts-class (FLCohorts), 49
FLCohorts-methods (FLCohorts), 49

FLComp, 17, 21, 25, 27, 50, 51, 53–55, 59, 76,
80, 82, 84, 92, 99, 100, 118, 129, 134

FLComp-class (FLComp), 50
FLComps, 51
FLComps-class (FLComps), 51
FLCore::FLQuants stats::weighted.mean,

146
FLI, 52
FLI-class (FLI), 52
FLIndex, 8, 28, 53, 137
FLIndex,FLQuant-method (FLIndex), 53
FLIndex,missing-method (FLIndex), 53
FLIndex-class (FLIndex), 53
FLIndex-methods (FLIndex), 53
FLIndexBiomass, 54
FLIndexBiomass,FLQuant-method

(FLIndexBiomass), 54
FLIndexBiomass,missing-method

(FLIndexBiomass), 54
FLIndexBiomass-class (FLIndexBiomass),

54
FLIndexBiomass-methods

(FLIndexBiomass), 54
FLIndices, 28, 56
FLIndices,FLI-method (FLIndices), 56
FLIndices,list-method (FLIndices), 56
FLIndices,missing-method (FLIndices), 56
FLIndices-class (FLIndices), 56
FLIndices-methods (FLIndices), 56
FLlst, 47, 50, 51, 57, 57, 61, 64, 74, 78, 84
FLlst,ANY-method (FLlst), 57
FLlst,list-method (FLlst), 57
FLlst,missing-method (FLlst), 57
FLlst-class (FLlst), 57
FLlst-methods (FLlst), 57
FLModel, 10, 18, 58, 76, 92, 125, 127, 142
FLModel,character-method (FLModel), 58
FLModel,formula-method (FLModel), 58
FLModel,function-method (FLModel), 58
FLModel,missing-method (FLModel), 58
FLModel-class (FLModel), 58
FLModel-methods (FLModel), 58
FLModelSim, 60, 61
FLModelSim,character-method

(FLModelSim), 60
FLModelSim,formula-method (FLModelSim),

60
FLModelSim,function-method

160 INDEX

(FLModelSim), 60
FLModelSim,missing-method (FLModelSim),

60
FLModelSim-class (FLModelSim), 60
FLModelSim-methods (FLModelSim), 60
FLModelSims, 61
FLModelSims,ANY-method (FLModelSims), 61
FLModelSims,FLModelSims-method

(FLModelSims), 61
FLModelSims,list-method (FLModelSims),

61
FLModelSims,missing-method

(FLModelSims), 61
FLModelSims-class (FLModelSims), 61
FLModelSims-methods (FLModelSims), 61
FLPar, 13, 15, 62, 63, 102, 106, 118, 139, 151
FLPar,array-method (FLPar), 62
FLPar,FLPar-method (FLPar), 62
FLPar,missing-method (FLPar), 62
FLPar,vector-method (FLPar), 62
FLPar-class (FLPar), 62
FLPar-methods (FLPar), 62
FLParJK, 63, 93
FLParJK,ANY-method (FLParJK), 63
FLParJK-class (FLParJK), 63
FLPars, 64
FLPars,ANY-method (FLPars), 64
FLPars,FLPars-method (FLPars), 64
FLPars,list-method (FLPars), 64
FLPars,missing-method (FLPars), 64
FLPars-class (FLPars), 64
FLPars-methods (FLPars), 64
FLQuant, 7, 8, 13, 15, 19, 26, 30, 32, 37, 45,

49, 50, 62, 65, 67, 69–72, 92,
108–110, 117, 118, 120, 128, 137,
139, 141, 147–149, 151

FLQuant,array-method (FLQuant), 65
FLQuant,FLQuant-method (FLQuant), 65
FLQuant,matrix-method (FLQuant), 65
FLQuant,missing-method (FLQuant), 65
FLQuant,vector-method (FLQuant), 65
FLQuant-class (FLQuant), 65
FLQuant-methods (FLQuant), 65
FLQuantDistr, 68
FLQuantDistr,ANY,ANY-method

(FLQuantDistr), 68
FLQuantDistr,FLQuant,FLQuant-method

(FLQuantDistr), 68

FLQuantDistr-class (FLQuantDistr), 68
FLQuantDistr-methods (FLQuantDistr), 68
FLQuantJK, 70, 93
FLQuantJK,ANY-method (FLQuantJK), 70
FLQuantJK-class (FLQuantJK), 70
FLQuantPoint, 71
FLQuantPoint,FLQuant-method

(FLQuantPoint), 71
FLQuantPoint,missing-method

(FLQuantPoint), 71
FLQuantPoint-class (FLQuantPoint), 71
FLQuantPoint-methods (FLQuantPoint), 71
FLQuants, 19, 24, 73, 100, 106
FLQuants,ANY-method (FLQuants), 73
FLQuants,FLComp-method (FLQuants), 73
FLQuants,FLQuants-method (FLQuants), 73
FLQuants,list-method (FLQuants), 73
FLQuants,missing-method (FLQuants), 73
FLQuants-class (FLQuants), 73
FLQuants-methods (FLQuants), 73
FLS, 74
FLS-class (FLS), 74
FLSR, 28, 58, 60, 75, 78, 127
FLSR,ANY-method (FLSR), 75
FLSR,missing-method (FLSR), 75
FLSR-class (FLSR), 75
FLSR-methods (FLSR), 75
FLSRs, 16, 77
FLSRs,ANY-method (FLSRs), 78
FLSRs,FLSR-method (FLSRs), 78
FLSRs,list-method (FLSRs), 78
FLSRs,missing-method (FLSRs), 78
FLSRs-class (FLSRs), 78
FLSRs-methods (FLSRs), 78
FLStock, 8, 10, 20, 26, 28, 38, 74, 79, 100,

128, 137
FLStock,FLQuant-method (FLStock), 79
FLStock,FLQuants-method (FLStock), 79
FLStock,missing-method (FLStock), 79
FLStock-class (FLStock), 79
FLStock-methods (FLStock), 79
FLStockLen, 74, 81
FLStockLen,FLQuant-method (FLStockLen),

81
FLStockLen,missing-method (FLStockLen),

81
FLStockLen-class (FLStockLen), 81
FLStockLen-methods (FLStockLen), 81

INDEX 161

FLStocks, 83
FLStocks,ANY-method (FLStocks), 83
FLStocks,FLStock-method (FLStocks), 83
FLStocks,list-method (FLStocks), 83
FLStocks,missing-method (FLStocks), 83
FLStocks-class (FLStocks), 83
FLStocks-methods (FLStocks), 83
fmle, 58–60, 125
fmsy (msy), 101
fmsy-methods (msy), 101
FUNCTION, 84
Funwanted, 85
fwd, 44
fwdWindow, 85
fwdWindow,FLStock,missing-method

(fwdWindow), 85

geomean (SRModels), 123
getSlotNamesClass, 87
glm, 58, 60
gompertz (vonbert), 145
gr (accessors), 5
gr,FLSR-method (FLSR), 75
gr<- (accessors), 5
gr<-,FLSR,function-method (FLSR), 75
group, 87
group,FLQuant,function-method (group),

87

halfwidth,FLStockLen-method
(FLStockLen), 81

halfwidth<-,FLStockLen,-method
(FLStockLen), 81

harvest, 9, 80
harvest (accessors), 5
harvest(), 26
harvest,FLStock-method (FLStock), 79
harvest,FLStockLen-method (FLStockLen),

81
harvest.spwn, 80
harvest.spwn,FLStock-method (FLStock),

79
harvest.spwn,FLStockLen-method

(FLStockLen), 81
harvest.spwn<-,FLStock,FLQuant-method

(FLStock), 79
harvest.spwn<-,FLStock,numeric-method

(FLStock), 79

harvest.spwn<-,FLStockLen,FLQuant-method
(FLStockLen), 81

harvest.spwn<-,FLStockLen,numeric-method
(FLStockLen), 81

harvest<-, 80
harvest<- (accessors), 5
harvest<-,FLStock,character-method

(FLStock), 79
harvest<-,FLStock,FLQuant-method

(FLStock), 79
harvest<-,FLStock,numeric-method

(FLStock), 79
harvest<-,FLStockLen,character-method

(FLStockLen), 81
harvest<-,FLStockLen,FLQuant-method

(FLStockLen), 81
harvest<-,FLStockLen,numeric-method

(FLStockLen), 81
head,FLQuant-method

(tail,FLQuant-method), 136
hessian (accessors), 5
hessian,FLSR-method (FLSR), 75
hessian<- (accessors), 5
hessian<-,FLSR,array-method (FLSR), 75
histogram, 62, 96
histogram,formula,FLComp-method

(lattice), 95
histogram,formula,FLQuant-method

(lattice), 95
histogram,formula,FLQuants-method

(lattice), 95

iav, 88
ibind (dbind), 29
index (accessors), 5
index,FLIndex-method (FLIndex), 53
index,FLIndexBiomass-method

(FLIndexBiomass), 54
index.q,FLIndex-method (FLIndex), 53
index.q,FLIndexBiomass-method

(FLIndexBiomass), 54
index.q<-,FLIndex,FLQuant-method

(FLIndex), 53
index.q<-,FLIndex,numeric-method

(FLIndex), 53
index.q<-,FLIndexBiomass,FLQuant-method

(FLIndexBiomass), 54
index.q<-,FLIndexBiomass,numeric-method

(FLIndexBiomass), 54

162 INDEX

index.var,FLIndex-method (FLIndex), 53
index.var,FLIndexBiomass-method

(FLIndexBiomass), 54
index.var<-,FLIndex,FLQuant-method

(FLIndex), 53
index.var<-,FLIndex,numeric-method

(FLIndex), 53
index.var<-,FLIndexBiomass,FLQuant-method

(FLIndexBiomass), 54
index.var<-,FLIndexBiomass,numeric-method

(FLIndexBiomass), 54
index<- (accessors), 5
index<-,FLIndex,FLQuant-method

(FLIndex), 53
index<-,FLIndex,numeric-method

(FLIndex), 53
index<-,FLIndexBiomass,FLQuant-method

(FLIndexBiomass), 54
index<-,FLIndexBiomass,numeric-method

(FLIndexBiomass), 54
indicators.len, 89
initial (accessors), 5
initial,FLSR-method (FLSR), 75
initial<- (accessors), 5
initial<-,FLSR,function-method (FLSR),

75
intersect, 91
iter, 50, 53–55, 62, 74, 75, 92
iter,FLArray-method (iter), 92
iter,FLCohort,ANY-method (iter), 92
iter,FLQuant,ANY-method (iter), 92
iter-methods (iter), 92
iter<-, 62
iterCVs (dimSummaries), 32
iterCVs,FLQuant-method (dimSummaries),

32
iterMeans (dimSummaries), 32
iterMeans,FLPar-method (dimSummaries),

32
iterMeans,FLQuant-method

(dimSummaries), 32
iterMeans,FLQuantDistr-method

(dimSummaries), 32
iterMedians (dimSummaries), 32
iterMedians,FLPar-method

(dimSummaries), 32
iterMedians,FLQuant-method

(dimSummaries), 32

iterMedians,FLQuantDistr-method
(dimSummaries), 32

iterProb (dimSummaries), 32
iterProb,FLQuant-method (dimSummaries),

32
iterSums (dimSummaries), 32
iterSums,FLPar-method (dimSummaries), 32
iterSums,FLQuant-method (dimSummaries),

32
iterVars (dimSummaries), 32
iterVars,FLPar-method (dimSummaries), 32
iterVars,FLQuant-method (dimSummaries),

32
iterVars,FLQuantDistr-method

(dimSummaries), 32
ivonbert (vonbert), 145

jackknife, 71, 93
jackknife(), 63
jackknife,FLModel-method (jackknife), 93
jackknife,FLQuant-method (jackknife), 93
jackknife,FLQuants-method (jackknife),

93
jackknife-methods (jackknife), 93
join, 94
join,FLQuant,FLQuant-method (join), 94
join,FLQuants,missing-method (join), 94

l25 (indicators.len), 89
l95 (indicators.len), 89
landings, 80
landings (accessors), 5
landings,FLStock-method (FLStock), 79
landings,FLStockLen-method

(FLStockLen), 81
landings.n, 80
landings.n,FLStock-method (FLStock), 79
landings.n,FLStockLen-method

(FLStockLen), 81
landings.n<-, 80
landings.n<-,FLStock,FLQuant-method

(FLStock), 79
landings.n<-,FLStock,numeric-method

(FLStock), 79
landings.n<-,FLStockLen,FLQuant-method

(FLStockLen), 81
landings.n<-,FLStockLen,numeric-method

(FLStockLen), 81
landings.wt, 80

INDEX 163

landings.wt,FLStock-method (FLStock), 79
landings.wt,FLStockLen-method

(FLStockLen), 81
landings.wt<-, 80
landings.wt<-,FLStock,FLQuant-method

(FLStock), 79
landings.wt<-,FLStock,numeric-method

(FLStock), 79
landings.wt<-,FLStockLen,FLQuant-method

(FLStockLen), 81
landings.wt<-,FLStockLen,numeric-method

(FLStockLen), 81
landings<-, 80
landings<- (accessors), 5
landings<-,FLStock,FLQuant-method

(FLStock), 79
landings<-,FLStock,numeric-method

(FLStock), 79
landings<-,FLStockLen,FLQuant-method

(FLStockLen), 81
landings<-,FLStockLen,numeric-method

(FLStockLen), 81
lapply, 58
lattice, 19, 95, 96, 103, 104, 122
lattice-FLCore (lattice), 95
lbar (indicators.len), 89
lc50 (indicators.len), 89
lenquantile (indicators.len), 89
list, 47, 50, 57, 58, 61, 64, 67, 74, 78, 84
lmax5 (indicators.len), 89
lmaxy (indicators.len), 89
lmean (indicators.len), 89
lmode (indicators.len), 89
log,FLQuant-method

(exp,FLQuant-method), 40
logerror (accessors), 5
logerror<- (accessors), 5
logl (accessors), 5
logl,FLSR-method (FLSR), 75
logl.ar1 (SRModels), 123
logl<- (accessors), 5
logl<-,FLSR,function-method (FLSR), 75
loglAR1, 125
logLik, 10, 18
logLik (accessors), 5
logLik,FLSR-method (FLSR), 75
logLik<- (accessors), 5
logLik<-,FLSR,logLik-method (FLSR), 75

logLik<-,FLSR,numeric-method (FLSR), 75
lower, 125
lower (upperlower), 142
lower,FLModel-method (upperlower), 142
lower-methods (upperlower), 142
lower<- (upperlower), 142
lower<-,FLModel,numeric-method

(upperlower), 142
lower<--methods (upperlower), 142
lowq,FLQuantPoint-method

(FLQuantPoint), 71
lowq<-,FLQuantPoint,FLQuant-method

(FLQuantPoint), 71

m, 80
m (accessors), 5
m,FLBiol-method (FLBiol), 45
m,FLStock-method (FLStock), 79
m,FLStockLen-method (FLStockLen), 81
m.spwn, 80
m.spwn,FLStock-method (FLStock), 79
m.spwn,FLStockLen-method (FLStockLen),

81
m.spwn<-,FLStock,FLQuant-method

(FLStock), 79
m.spwn<-,FLStock,numeric-method

(FLStock), 79
m.spwn<-,FLStockLen,FLQuant-method

(FLStockLen), 81
m.spwn<-,FLStockLen,numeric-method

(FLStockLen), 81
m<-, 80
m<- (accessors), 5
m<-,FLBiol,FLQuant-method (FLBiol), 45
m<-,FLStock,FLQuant-method (FLStock), 79
m<-,FLStock,numeric-method (FLStock), 79
m<-,FLStockLen,FLQuant-method

(FLStockLen), 81
m<-,FLStockLen,numeric-method

(FLStockLen), 81
mad, 118
mase, 97
mase,FLIndices,list-method (mase), 97
mase,FLQuant,FLQuants-method (mase), 97
mat, 80
mat (accessors), 5
mat,FLStock-method (FLStock), 79
mat,FLStockLen-method (FLStockLen), 81
mat<- (accessors), 5

164 INDEX

mat<-,FLStock,FLQuant-method (FLStock),
79

mat<-,FLStock,numeric-method (FLStock),
79

mat<-,FLStockLen,FLQuant-method
(FLStockLen), 81

mat<-,FLStockLen,numeric-method
(FLStockLen), 81

matmult, 151
mbar, 98
mean, 36, 37, 62
mean,FLQuantPoint-method

(FLQuantPoint), 71
mean<-,FLQuantPoint,FLQuant-method

(FLQuantPoint), 71
meanage, 98
meanageCatch (meanage), 98
meanwt, 99
meanwtCatch (meanwt), 99
median, 36, 62
median,FLQuantPoint-method

(FLQuantPoint), 71
median<-,FLQuantPoint,FLQuant-method

(FLQuantPoint), 71
methods::Arith, 15
metrics, 100
metrics,FLComp,list-method (metrics),

100
metrics,FLS,missing-method (metrics),

100
metrics-methods (metrics), 100
missing, 67
mixedsrr (SRModels), 123
model (accessors), 5
model,FLSR-method (FLSR), 75
model.frame, 50, 74
model<- (accessors), 5
model<-,FLSR,character-method (FLSR), 75
model<-,FLSR,formula-method (FLSR), 75
model<-,FLSR,function-method (FLSR), 75
model<-,FLSR,list-method (FLSR), 75
mohnMatrix, 101
msy, 101
msy-methods (msy), 101

n (accessors), 5
n,FLBiol-method (FLBiol), 45
n,FLQuantPoint-method (FLQuantPoint), 71
n<- (accessors), 5

n<-,FLBiol,FLQuant-method (FLBiol), 45
name (accessors), 5
name, (accessors), 5
name,FLBiol-method (FLBiol), 45
name,FLComp-method (FLComp), 50
name,FLIndex-method (FLIndex), 53
name,FLIndexBiomass-method

(FLIndexBiomass), 54
name,FLSR-method (FLSR), 75
name,FLStock-method (FLStock), 79
name,FLStockLen-method (FLStockLen), 81
name<- (accessors), 5
name<-,FLBiol,character-method

(FLBiol), 45
name<-,FLComp,character-method

(FLComp), 50
name<-,FLIndex,character-method

(FLIndex), 53
name<-,FLIndexBiomass,character-method

(FLIndexBiomass), 54
name<-,FLSR,character-method (FLSR), 75
name<-,FLStock,character-method

(FLStock), 79
name<-,FLStockLen,character-method

(FLStockLen), 81
name<-<- (accessors), 5
names, 102, 103
names,FLArray-method (names), 102
names,FLPar-method (names), 102
names<-,FLPar,character-method (names),

102
nls, 59, 60, 125
nsher (datasets), 28
numeric, 67

operators (%+%), 149
optim, 125
orig,FLParJK-method (FLParJK), 63
orig,FLQuantJK-method (FLQuantJK), 70
orig,FLQuants-method (FLQuantJK), 70

params (accessors), 5
params, (accessors), 5
params,FLSR-method (FLSR), 75
params<- (accessors), 5
params<-,FLSR,FLPar-method (FLSR), 75
params<-<- (accessors), 5
ple4 (datasets), 28
ple4sex (datasets), 28

INDEX 165

plot, 46, 49, 53–55, 62, 80, 82, 84, 103, 104
plot,FLBiol,missing-method (plot), 103
plot,FLCohort,missing-method (plot), 103
plot,FLIndex,missing-method (plot), 103
plot,FLIndices,missing-method (plot),

103
plot,FLPar,missing-method (plot), 103
plot,FLQuant,missing-method (plot), 103
plot,FLQuantPoint,missing-method

(plot), 103
plot,FLSR,missing-method (plot), 103
plot,FLStock,missing-method (plot), 103
plot,FLStocks,FLPar-method (plot), 103
plot,FLStocks,missing-method (plot), 103
pmega (indicators.len), 89
predictModel, 8, 39, 105
predictModel,FLQuants,character-method

(predictModel), 105
predictModel,FLQuants,formula-method

(predictModel), 105
predictModel,FLQuants,function-method

(predictModel), 105
predictModel,FLQuants,list-method

(predictModel), 105
predictModel,FLQuants,missing-method

(predictModel), 105
predictModel,missing,ANY-method

(predictModel), 105
predictModel-class (predictModel), 105
predictModel-methods (predictModel), 105
production, 106
production,FLStock-method (production),

106
propagate, 50, 53–55, 75, 107, 120
propagate,FLQuant-method (propagate),

107
propagate-methods (propagate), 107
properties, 108

qapply, 50, 75
qbind (dbind), 29
quant, 31, 32, 49, 109
quant,FLArray-method (quant), 109
quant-methods (quant), 109
quant<-,FLArray,character-method

(quant), 109
quantile,FLQuantPoint-method

(FLQuantPoint), 71
quantMeans (dimSummaries), 32

quantMeans,FLQuant-method
(dimSummaries), 32

quantSums (dimSummaries), 32
quantSums,FLQuant-method

(dimSummaries), 32
quantSums-methods (dimSummaries), 32
quantTotals, 110
quantTotals-methods (quantTotals), 110
quantVars (dimSummaries), 32
quantVars,FLQuant-method

(dimSummaries), 32
quantVars,FLQuantDistr-method

(dimSummaries), 32

range,FLBiol-method (FLBiol), 45
range,FLComp-method (FLComp), 50
range,FLIndex-method (FLIndex), 53
range,FLIndexBiomass-method

(FLIndexBiomass), 54
range,FLSR-method (FLSR), 75
range,FLStock-method (FLStock), 79
range,FLStockLen-method (FLStockLen), 81
range<- (accessors), 5
range<-,FLBiol,numeric-method (FLBiol),

45
range<-,FLComp,numeric-method (FLComp),

50
range<-,FLIndex,numeric-method

(FLIndex), 53
range<-,FLIndexBiomass,numeric-method

(FLIndexBiomass), 54
range<-,FLSR,numeric-method (FLSR), 75
range<-,FLStock,numeric-method

(FLStock), 79
range<-,FLStockLen,numeric-method

(FLStockLen), 81
readVPAIntercatch, 111
rec (accessors), 5
rec,FLSR-method (FLSR), 75
rec.age,, 84
rec<- (accessors), 5
rec<-,FLSR,FLQuant-method (FLSR), 75
rec<-,FLSR,numeric-method (FLSR), 75
residuals,FLSR-method (FLSR), 75
residuals-FLQuant, 111
residuals<- (accessors), 5
residuals<-,FLSR,FLArray-method (FLSR),

75

166 INDEX

residuals<-,FLSR,numeric-method (FLSR),
75

richards (vonbert), 145
ricker (SRModels), 123
Ricker.SV (SRModels), 123
ricker.sv (SRModels), 123
rickerAR1 (SRModels), 123
rickerCa (SRModels), 123
rickerSV (SRModels), 123
rlnoise

(rnoise,numeric,FLQuant-method),
112

rlnoise,numeric,FLQuant-method
(rnoise,numeric,FLQuant-method),
112

rlnoise,numeric,missing-method
(rnoise,numeric,FLQuant-method),
112

rlnoise-method
(rnoise,numeric,FLQuant-method),
112

rlnorm, 14
rnoise (rnoise,numeric,FLQuant-method),

112
rnoise,numeric,FLQuant-method, 112
rnoise,numeric,missing-method

(rnoise,numeric,FLQuant-method),
112

rnoise-method
(rnoise,numeric,FLQuant-method),
112

rnorm, 117
roc, 114
ruleset, 114, 144
ruleset,FLStock-method (ruleset), 114
runstest, 115
runstest,FLQuant,FLQuant-method

(runstest), 115
runstest,FLQuant,missing-method

(runstest), 115
runstest,FLQuants,FLQuants-method

(runstest), 115
runstest,FLQuants,missing-method

(runstest), 115
runstest,numeric,missing-method

(runstest), 115
runstest,numeric,numeric-method

(runstest), 115

rwalk, 117

sample(), 147
sbind (dbind), 29
sbmsy (msy), 101
sbmsy-methods (msy), 101
seasonMeans (dimSummaries), 32
seasonMeans,FLQuant-method

(dimSummaries), 32
seasonMeans,FLQuantDistr-method

(dimSummaries), 32
seasonSums (dimSummaries), 32
seasonSums,FLQuant-method

(dimSummaries), 32
seasonSums,FLQuantDistr-method

(dimSummaries), 32
seasonVars (dimSummaries), 32
seasonVars,FLQuant-method

(dimSummaries), 32
seasonVars,FLQuantDistr-method

(dimSummaries), 32
segreg (SRModels), 123
segregAR1 (SRModels), 123
sel.pattern (accessors), 5
sel.pattern,FLIndex-method (FLIndex), 53
sel.pattern,FLIndexBiomass-method

(FLIndexBiomass), 54
sel.pattern<- (accessors), 5
sel.pattern<-,FLIndex,FLQuant-method

(FLIndex), 53
sel.pattern<-,FLIndex,numeric-method

(FLIndex), 53
sel.pattern<-,FLIndexBiomass,FLQuant-method

(FLIndexBiomass), 54
sel.pattern<-,FLIndexBiomass,numeric-method

(FLIndexBiomass), 54
setunits (units-FLCore), 138
shepherd (SRModels), 123
shepherdSV (SRModels), 123
show, 50, 74, 118
show,FLArray-method (show), 118
show,FLPar-method (show), 118
show,FLQuants-method (show), 118
simplify, 119
simplify,FLStock-method (simplify), 119
simplify-methods (simplify), 119
slim, 120
slim,FLComp-method (slim), 120
slim-methods (slim), 120

INDEX 167

split,FLComp,vector-method
(split-methods), 121

split-methods, 121
splom, 62, 121, 122
splom,FLPar,missing-method (splom), 121
spr0, 124
spread, 122
spwn (accessors), 5
spwn,FLBiol-method (FLBiol), 45
spwn<- (accessors), 5
spwn<-,FLBiol,FLQuant-method (FLBiol),

45
SRModels, 75, 123
ssb, 46, 80, 82, 127
ssb,FLBiol-method (ssb), 127
ssb,FLSR-method (FLSR), 75
ssb,FLStock-method (ssb), 127
ssb-FLBiol,method (ssb), 127
ssb-methods (ssb), 127
ssb<-,FLSR,FLQuant-method (FLSR), 75
ssb<-,FLSR,numeric-method (FLSR), 75
ssb_next, 129
ssbpurec, 80, 82
standardUnits, 130
standardUnits,character-method

(standardUnits), 130
standardUnits,FLBiol-method

(standardUnits), 130
standardUnits,FLS-method

(standardUnits), 130
stock, 80
stock (accessors), 5
stock,FLStock-method (FLStock), 79
stock,FLStockLen-method (FLStockLen), 81
stock.n, 80
stock.n,FLStock-method (FLStock), 79
stock.n,FLStockLen-method (FLStockLen),

81
stock.n<-,FLStock,FLQuant-method

(FLStock), 79
stock.n<-,FLStock,numeric-method

(FLStock), 79
stock.n<-,FLStockLen,FLQuant-method

(FLStockLen), 81
stock.n<-,FLStockLen,numeric-method

(FLStockLen), 81
stock.wt, 80
stock.wt,FLStock-method (FLStock), 79

stock.wt,FLStockLen-method
(FLStockLen), 81

stock.wt<-,FLStock,FLQuant-method
(FLStock), 79

stock.wt<-,FLStock,numeric-method
(FLStock), 79

stock.wt<-,FLStockLen,FLQuant-method
(FLStockLen), 81

stock.wt<-,FLStockLen,numeric-method
(FLStockLen), 81

stock<- (accessors), 5
stock<-,FLStock,FLQuant-method

(FLStock), 79
stock<-,FLStock,numeric-method

(FLStock), 79
stock<-,FLStockLen,FLQuant-method

(FLStockLen), 81
stock<-,FLStockLen,numeric-method

(FLStockLen), 81
stripplot, 96
stripplot,formula,FLComp-method

(lattice), 95
stripplot,formula,FLQuant-method

(lattice), 95
sum, 36, 37
summary, 50, 53–55, 62, 74, 75, 132
summary,FLArray-method, 131
summary,FLBiol-method

(summary,FLArray-method), 131
summary,FLComp-method

(summary,FLArray-method), 131
summary,FLlst-method

(summary,FLArray-method), 131
summary,FLlst-methods

(summary,FLArray-method), 131
summary,FLModel-method

(summary,FLArray-method), 131
summary,FLPar-method

(summary,FLArray-method), 131
summary,FLQuantPoint-method

(summary,FLArray-method), 131
summary,FLQuants-method

(summary,FLArray-method), 131
summary,FLQuants-methods

(summary,FLArray-method), 131
summary,predictModel-method

(summary,FLArray-method), 131
survey, 132

168 INDEX

survey,FLStock,FLIndex-method (survey),
132

survey,FLStock,FLIndexBiomass-method
(survey), 132

survey,FLStock,FLIndices-method
(survey), 132

survey,FLStock,missing-method (survey),
132

survivors, 134
survRec (SRModels), 123
survSRR (SRModels), 123
sv2ab (SRModels), 123
sweep, 135
sweep,FLArray-method, 135
sweep,FLPar-method

(sweep,FLArray-method), 135
sys.nframe, 123

tail,FLQuant-method, 136
transform, 50, 53–55, 75
trim, 49, 50, 53–55, 75, 80, 82, 137
trim,FLArray-method (trim), 137
trim,FLBiol-method (trim), 137
trim,FLComp-method (trim), 137
trim,FLS-method (trim), 137
trim-methods (trim), 137
type (accessors), 5
type,FLIndex-method (FLIndex), 53
type<- (accessors), 5
type<-,FLIndex,character-method

(FLIndex), 53

ubind (dbind), 29
unitMeans (dimSummaries), 32
unitMeans,FLQuant-method

(dimSummaries), 32
unitMeans,FLQuantDistr-method

(dimSummaries), 32
units, 49
units,FLArray-method (units-FLCore), 138
units,FLComp-method, 50, 75
units,FLComp-method (units-FLCore), 138
units,FLPar-method, 62
units,FLPar-method (units-FLCore), 138
units-FLCore, 138
units<-,FLCohort,character-method, 49
units<-,FLComp,list-method, 50, 75
units<-,FLPar,character-method, 62

units<-,FLArray,character-method
(units-FLCore), 138

units<-,FLComp,character-method
(units-FLCore), 138

units<-,FLComp,function-method
(units-FLCore), 138

units<-,FLComp,list-method
(units-FLCore), 138

units<-,FLPar,character-method
(units-FLCore), 138

unitSums (dimSummaries), 32
unitSums,FLQuant-method (dimSummaries),

32
unitSums,FLQuantDistr-method

(dimSummaries), 32
unitVars (dimSummaries), 32
unitVars,FLQuant-method (dimSummaries),

32
unitVars,FLQuantDistr-method

(dimSummaries), 32
uom, 66, 140
uomTable, 141
uomUnits (uom), 140
upper, 125
upper (upperlower), 142
upper,FLModel-method (upperlower), 142
upper-methods (upperlower), 142
upper<- (upperlower), 142
upper<-,FLModel,numeric-method

(upperlower), 142
upper<--methods (upperlower), 142
upperlower, 142
uppq,FLQuantPoint-method

(FLQuantPoint), 71
uppq<-,FLQuantPoint,FLQuant-method

(FLQuantPoint), 71

var, 36, 37, 62
var,FLQuantPoint-method (FLQuantPoint),

71
var<-,FLQuantPoint,FLQuant-method

(FLQuantPoint), 71
vcov (accessors), 5
vcov,FLSR-method (FLSR), 75
vcov<- (accessors), 5
vcov<-,FLSR,array-method (FLSR), 75
vector, 47, 61, 64
verify, 143
verify,FLComp-method (verify), 143

INDEX 169

verify,FLStock-method (verify), 143
vonbert, 145

weighted.mean,FLQuants,FLQuants-method,
145

window, 50, 53–55, 58, 75
window(), 86
wireframe, 146
wireframe,FLQuant-method (wireframe),

146
wt (accessors), 5
wt,FLBiol-method (FLBiol), 45
wt<- (accessors), 5
wt<-,FLBiol,FLQuant-method (FLBiol), 45

x,i,j,drop, 42
xyplot, 49, 50, 74, 96, 104
xyplot,formula,FLCohort-method

(lattice), 95
xyplot,formula,FLComp-method (lattice),

95
xyplot,formula,FLQuant-method

(lattice), 95
xyplot,formula,FLQuants-method

(lattice), 95

ybind (dbind), 29
yearMeans (dimSummaries), 32
yearMeans,FLQuant-method

(dimSummaries), 32
yearMeans,FLQuantDistr-method

(dimSummaries), 32
yearMedians (dimSummaries), 32
yearMedians,FLQuant-method

(dimSummaries), 32
yearSample, 147
yearSums (dimSummaries), 32
yearSums,FLQuant-method (dimSummaries),

32
yearSums,FLQuantDistr-method

(dimSummaries), 32
yearTotals (quantTotals), 110
yearTotals-methods (quantTotals), 110
yearVars (dimSummaries), 32
yearVars,FLQuant-method (dimSummaries),

32
yearVars,FLQuantDistr-method

(dimSummaries), 32

z, 148

z,FLS-method (z), 148
z-methods (z), 148

	acc
	accessors
	adjust,FLStock-method
	ageopt
	AIC
	append-FLCore
	apply,FLArray,numeric,function-method
	ar1rlnorm
	Arith,numeric,FLArray-method
	as.FLSRs
	bias
	BIC
	bubbles
	catch.n,FLQuant-method
	catchInmature
	coerce-methods
	compare
	compute
	computeHarvest,FLStock,missing-method
	cpue
	createFLAccesors
	datasets
	dbind
	dims
	dimSummaries
	discardsRatio
	drop,FLArray-method
	evalPredictModel
	exp,FLQuant-method
	Extract
	ffwd
	FLArray
	FLBiol
	FLBiols
	FLCohort
	FLCohorts
	FLComp
	FLComps
	FLI
	FLIndex
	FLIndexBiomass
	FLIndices
	FLlst
	FLModel
	FLModelSim
	FLModelSims
	FLPar
	FLParJK
	FLPars
	FLQuant
	FLQuantDistr
	FLQuantJK
	FLQuantPoint
	FLQuants
	FLS
	FLSR
	FLSRs
	FLStock
	FLStockLen
	FLStocks
	FUNCTION
	Funwanted
	fwdWindow
	getSlotNamesClass
	group
	iav
	indicators.len
	intersect
	iter
	jackknife
	join
	lattice
	mase
	mbar
	meanage
	meanwt
	metrics
	mohnMatrix
	msy
	names
	plot
	predictModel
	production
	propagate
	properties
	quant
	quantTotals
	readVPAIntercatch
	residuals-FLQuant
	rnoise,numeric,FLQuant-method
	roc
	ruleset
	runstest
	rwalk
	show
	simplify
	slim
	split-methods
	splom
	spread
	SRModels
	ssb
	ssb_next
	standardUnits
	summary,FLArray-method
	survey
	survivors
	sweep,FLArray-method
	tail,FLQuant-method
	trim
	units-FLCore
	uom
	uomTable
	upperlower
	verify
	vonbert
	weighted.mean,FLQuants,FLQuants-method
	wireframe
	yearSample
	z
	+
	Index

